267
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Periodic wave solutions and stability analysis for the (3+1)-D potential-YTSF equation arising in fluid mechanics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1594-1616 | Received 18 Oct 2019, Accepted 04 May 2020, Published online: 26 Oct 2020

References

  • H.M. Baskonus, Complex soliton solutions to the Gilson–Pickering model, Axioms 8(1) (2019), p. 18. doi: 10.3390/axioms8010018
  • H.M. Baskonus, Complex surfaces to the fractional (2+1)-dimensional Boussinesq dynamical model with the local M-derivative, Eur. Phys. J. Plus 134(322) (2019), pp. 1–10.
  • H.M. Baskonus and H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves Random Complex Media 26 (2016), pp. 201–208.
  • H.M. Baskonus and J.F. Gómez-Aguilar, New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative, Modern Phys. Lett. B 33(21) (2019), pp. 1950251:1–1950251:16. doi: 10.1142/S0217984919502518
  • H.M. Baskonus, T.A. Sulaiman, and H. Bulut, Bright, dark optical and other solitons to the generalized higher-order NLSE in optical fibers, Opt. Quant. Electron. 50(253) (2018), pp. 1–12.
  • Z.D. Dai, J. Liu, X.P. Zeng, and Z.J. Liu, Periodic kink-wave and kinky periodic-wave solutions for the Jimbo-Miwa equation, Phys. Lett. A 372 (2008), pp. 5984–5986. doi: 10.1016/j.physleta.2008.07.064
  • M. Dehghan and J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method, Zeitschrift für Naturforschung A 64a (2009), pp. 420–30. doi: 10.1515/zna-2009-7-803
  • M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Numer. Methods Heat Fluid Flow 21 (2011), pp. 736–53. doi: 10.1108/09615531111148482
  • M.R. Foroutan, J. Manafian, and A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear Dyn. 92(4) (2018), pp. 2077–2092. doi: 10.1007/s11071-018-4182-5
  • W. Gao, H.F. Ismael, H. Bulut, and H.M. Baskonus, Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr. 95 (3) (2020), pp. 1–17. doi:10.1088/1402-4896/ab4a50; doi:10.1016/j.rinp.2019.102555.
  • W. Gao, H.F. Ismael, S.A. Mohammed, H.M. Baskonus, and H. Bulut, Complex and real optical soliton properties of the paraxial non-linear Schrodinger equation in Kerr media with M-Fractional, Frontiers Phys. (2019). doi:10.3389/fphy.2019.00197.
  • W. Gao, M. Partohaghighi, H.M. Baskonus, and S. Ghavi, Regarding the group preserving scheme and method of line to the numerical simulations of Klein-Gordon model, Results Phys. 15 (2019), p. 102555.
  • W. Gao, P. Veeresh, D.G. Prakash, H.M. Baskonus, and G. Yel, A powerful approach for fractional Drinfeld–Sokolov–Wilson equation with Mittag-Leffler law, Alexandria Eng. J. 58 (2019), pp. 1301–1311. doi: 10.1016/j.aej.2019.11.002
  • X.G. Geng and Y.L. Ma, N-soliton solution and its wronskian form of a (3+1)-dimensional nonlinear evolution equation, Phys. Lett. A 369(4) (2007), pp. 285–289. doi: 10.1016/j.physleta.2007.04.099
  • M. Goyal, H.M. Baskonus, and A. Prakash, An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women, Euro. Phys. J. Plus 134(481) (2019), pp. 1–10.
  • B. He and Q. Meng, Bilinear form and new interaction solutions for the sixth-order Ramani equation, Appl. Math. Lett. 98 (2019), pp. 411–418. doi: 10.1016/j.aml.2019.06.036
  • Y. Hu, H. Chen, and Z. Dai, New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation, Appl. Math. Comput. 234 (2014), pp. 548–556.
  • L.L. Huang and Y. Chen, Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada–Kotera equation, Commun. Theor. Phys. 67(5) (2017), pp. 473–478. doi: 10.1088/0253-6102/67/5/473
  • O.A. Ilhan, S.G. Kasimov, S.Q. Otaev, and H.M. Baskonus, On the solvability of a mixed problem for a high-order partial differential equation with fractional derivatives with respect to time, with laplace operators with spatial variables and nonlocal boundary conditions in sobolev classes, Mathematics 7(3) (2019), p. 235. doi: 10.3390/math7030235
  • O.A. Ilhan and J. Manafian, Periodic type and periodic cross-kink wave solutions to the (2+1) -dimensional breaking soliton equation arising in fluid dynamics, Modern Phys. Lett. B 33(23) (2019), p. 1950277. doi:10.1142/S0217984919502774.
  • O.A. Ilhan and J. Manafian, Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics, Modern Phys. Lett. B 1950277 (2019), pp. 1–26.
  • O.A. Ilhan, J Manafian, and M Shahriari, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili equation, Comput. Math. Appl. 78(8) (2019), pp. 2429–2448. doi: 10.1016/j.camwa.2019.03.048
  • J.Q. Lu and S.D. Bilige, Lump solutions of a (2+1)-dimensional bSK equation, Nonlinear Dyn. 90 (2017), pp. 2119–2124. doi: 10.1007/s11071-017-3707-7
  • J. Lü, S. Bilige, and T. Chaolu, The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation, Nonlinear Dyn. 91 (2018), pp. 1669–1676. doi:10.1007/s11071-017-3972-5.
  • J. Lü, S. Bilige, X. Gao, Y. Bai, and R. Zhang, Abundant lump solution and interaction phenomenon to Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation, J. Appl. Math. Phys. 6 (2018), pp. 1733–1747. doi: 10.4236/jamp.2018.68148
  • W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Let. A 379 (2015), pp. 1975–1978. doi: 10.1016/j.physleta.2015.06.061
  • W.X. Ma and Z. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput. 218 (2012), pp. 11871–11879.
  • W.X. Ma, Z.Y. Qin, and X. Lv, Lump solutions to dimensionally reduced pgKP and pgbKP equations, Nonlinear Dyn. 84 (2016), pp. 923–931. doi:10.1007/s11071-015-2539-6.
  • W.X. Ma, Y. Zhou, and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B 30(28n29) (2016), p. 1640018.
  • J. Manafian, On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus 130 (2015), pp. 1–20. doi: 10.1140/epjp/i2015-15001-1
  • J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(ϕ/2)-expansion method, Optik 127 (2016), pp. 4222–4245. doi: 10.1016/j.ijleo.2016.01.078
  • J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations, Comput. Math. Appl. 76(5) (2018), pp. 1246–1260. doi: 10.1016/j.camwa.2018.06.018
  • J. Manafian and M.F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger–Boussinesq system via an analytical method, Eur. Phys. J. Plus 131 (2016), p. 97. doi: 10.1140/epjp/i2016-16097-3
  • J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu–Eckhaus equation via tan(ϕ/2)-expansion method, Optik 127 (2016), pp. 5543–5551. doi: 10.1016/j.ijleo.2016.03.041
  • J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Opt. Quant. Elec. 48 (2016), pp. 1–32. doi: 10.1007/s11082-015-0274-3
  • J. Manafian and M. Lakestani, Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation, Pramana 92 (2019), pp. 41. doi: 10.1007/s12043-018-1700-4
  • J. Manafian, M.R. Foroutan, and A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model, Eur. Phys. J. Plus 132 (2017), pp. 494. doi: 10.1140/epjp/i2017-11762-7
  • J. Manafian, B. Mohammadi Ivatlo, and M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional breaking soliton equation, Appl. Math. Comput. 13 (2019), pp. 13–41.
  • A. Ramani, Inverse scattering, ordinary differential equations of Painleve type and Hirota's bilinear formalism, Ann. New York Acad. Sci. 373 (1981), pp. 54–67. doi: 10.1111/j.1749-6632.1981.tb51131.x
  • J. Satsuma and M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys. 20(7) (1979), pp. 1496–1503. doi: 10.1063/1.524208
  • S.H. Seyedi, B.N. Saray, and A.J. Chamkha, Heat and mass transfer investigation of MHD Eyring–Powell flow in a stretching channel with chemical reactions, Phys. A Stat. Mech. Appl. 54415 (2020), pp. 124109.
  • R. Silambarasan, H.M. Baskonus, and H. Bulut, Jacobi elliptic function solutions of the double dispersive equation in the Murnaghan's rod, Eur. Phys. J. Plus 134(125) (2019), pp. 1–122.
  • C.T. Sindi and J. Manafian, Wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized G′/G-expansion method, Math. Methods Appl. Sci. 87 (2016), pp. 1–14.
  • L. Song and H. Zhang, A new variable coefficient Korteweg–de Vries equation-based sub-equation method and its application to the (3+1)-dimensional potential-YTSF equation, Appl. Math. Comput.189 (2007), pp. 560–566.
  • M. Songa and Y. Ge, Application of the G'/G-expansion method to (3+1)-dimensional nonlinear evolution equations, Comput. Math. Appl. 60 (2010), pp. 1220–1227. doi: 10.1016/j.camwa.2010.05.045
  • Y.N. Tang, S.Q. Tao, and Q. Guan, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Comput. Math. Appl. 72 (2016), pp. 2334–2342. doi: 10.1016/j.camwa.2016.08.027
  • C.J. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation, Nonlinear Dyn. 84 (2016), pp. 697–702. doi: 10.1007/s11071-015-2519-x
  • C.J. Wang and H. Fang, General high-order localized waves to the Bogoyavlenskii–Kadomtsev–Petviashvili equation, Nonlinear Dyn. 100 (2020). pp. 583–599. doi:10.1007/s11071-020-05499-5.
  • C.J. Wang, Z.D. Dai, and C.F. Liu, Interaction between kink solitary wave and rogue wave for (2+1)-dimensional Burgers equation, Mediterr. J. Math. 13 (2016), pp. 1087–098. doi: 10.1007/s00009-015-0528-0
  • J. Wang, H.L. An, and B. Li, Non-traveling lump solutions and mixed lump kink solutions to (2+1)-dimensional variable-coefficient Caudrey Dodd Gibbon Kotera Sawada equation, Modern Phys. Lett. B 33(22) (2019), p. 1950262. doi: 10.1142/S0217984919502622
  • Z. Yan, New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation, Phys. Lett. A 318 (2003), pp. 78–83. doi: 10.1016/j.physleta.2003.08.073
  • J.Y. Yang and W.X. Ma, Lump solutions to the bKP equation by symbolic computation, Int. J. Modern Phys. B 30 (2016), p. 1640028. doi:10.1142/S0217979216400282.
  • G. Yel and H.M. Baskonus, Solitons in conformable time-fractional Wu–Zhang system arising in coastal design, Pramana-J. Phys. 93(57) (2019), pp. 1–10.
  • X. Zeng, Z. Dai, and D. Li, New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation, Chaos Solitons Fract. 42 (2009), pp. 657–661. doi: 10.1016/j.chaos.2009.01.040
  • T.X. Zhang, H.N. Xuan, D.F. Zhang, and C.J. Wang, Non-travelling wave solutions to a (3+1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures, Chaos Solitons Fract. 34 (2007), pp. 1006–1013. doi: 10.1016/j.chaos.2006.04.005
  • Y. Zhang, H.H. Dong, X.E. Zhang, and H. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl. 73 (2017), pp. 246–252. doi: 10.1016/j.camwa.2016.11.009
  • Q. Zhou, M. Ekici, A. Sonmezoglu, J. Manafian, S. Khaleghizadeh, and M. Mirzazadeh, Exact solitary wave solutions to the generalized Fisher equation, Optik 127 (2016), pp. 12085–12092. doi: 10.1016/j.ijleo.2016.09.116

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.