302
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Fourth-order alternating direction implicit difference scheme to simulate the space-time Riesz tempered fractional diffusion equation

ORCID Icon & ORCID Icon
Pages 2137-2155 | Received 27 Feb 2020, Accepted 02 Sep 2020, Published online: 16 Sep 2021

References

  • M. Abbaszadeh, Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation, Appl. Math. Lett. 88 (2019), pp. 179–185.
  • M. Abbaszadeh and H. Amjadian, Second-order finite difference/spectral element formulation for solving the fractional advection-diffusion equation, Commun. Appl. Math. Comput. (2020). Available at https://doi.org/10.1007/s42967-020-00060-y.
  • M. Abbaszadeh, M. Dehghan, and Y. Zhou, Crank-Nicolson/Galerkin spectral method for solving two-dimensional time-space distributed-order weakly singular integro-partial differential equation, J. Comput. Appl. Math. 374 (2020), pp. 112739.
  • B. Baeumer and M.M. Meerschaert, Tempered stable Levy motion and transient superdiffusion, J. Comput. Appl. Math. 233 (2010), pp. 2438–2448.
  • W. Bu, Y. Tang, Y. Wu, and J. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys. 293 (2015), pp. 264–279.
  • C. Çelik and M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys. 231(4) (2012), pp. 1743–1750.
  • M. Chen and W. Deng, Discretized fractional substantial calculus, ESAIM: Math. Model. Numer. Anal. 49(2) (2015), pp. 373–394.
  • M. Chen and W. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett. 68 (2017), pp. 87–93.
  • M. Chen and W. Deng, High-order algorithm for the time-tempered fractional Feynman-Kac equation, J. Sci. Comput. 76(2) (2018), pp. 867–887.
  • X. Chen, Y. Di, J. Duan, and D.F. Li, Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations, Appl. Math. Lett. 84 (2018), pp. 160–167.
  • X. Cheng, J. Duan, and D.F. Li, A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations, Appl. Math. Comput. 346 (2019), pp. 452–464.
  • E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comput. 75(254) (2006), pp. 673–696.
  • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys.228(20) (2009), pp. 7792–7804.
  • M. Dehghan and M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl. 75(8) (2018), pp. 2903–2914.
  • M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ. 26 (2010), pp. 448–479.
  • M. Dehghan, M. Abbaszadeh, and W. Deng, Fourth-order numerical method for the space–time tempered fractional diffusion-wave equation, Appl. Math. Lett. 73 (2017), pp. 120–127.
  • D. del Castillo-Negrete, Fractional diffusion models of nonlocal transport, Phys. Plasmas 13(8) (2006), p. 082308.
  • H. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation, Appl. Numer. Math. 135 (2019), pp. 30–46.
  • M. Donatelli, M. Mazza, and S. Serra–Capizzano, Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput. 40(6) (2018), pp. A4007–A4039.
  • V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ. 22(3) (2006), pp. 558–576.
  • G. Fairweather, X. Yang, D. Xu, and H. Zhang, An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), pp. 1217–1239.
  • K.M. Furati, M. Yousuf, and A.Q.M. Khaliq, Fourth-order methods for space fractional reaction-diffusion equations with non-smooth data, Int. J. Comput. Math. 95 (2018), pp. 1240–1256.
  • G.H. Gao and Z.Z. Sun, Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations, J. Sci. Comput. 66 (2016), pp. 1281–1312.
  • M. Garg and P. Manohar, Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables, Afrika Mat. 25(1) (2014), pp. 161–181.
  • Z.P. Hao, Z.Z. Sun, and W.R. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281 (2015), pp. 787–805.
  • K. Kazmi and A.Q.M. Khaliq, A split–step predictor–corrector method for space–fractional reaction–diffusion equations with nonhomogeneous boundary conditions, Commun. Appl. Math. Comput. 1 (2019), pp. 525–544.
  • K. Kazmi and A.Q.M. Khaliq, An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions, Appl. Numer. Math. 147 (2020), pp. 142–160.
  • D. Kumar and M. Kaplan, New analytical solutions of (2+1)-dimensional conformable time fractional Zoomeron equation via two distinct techniques, Chinese J. Phys. 56 (2018), pp. 2173–2185.
  • C.P. Li, F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, New York, 2015.
  • H.L. Liao, P. Lyu, and S. Vong, Second-order BDF time approximation for Riesz space-fractional diffusion equations, Int. J. Comput. Math. 95 (2018), pp. 144–158.
  • A. Lischke, J.F. Kelly, and M.M Meerschaert, Mass-conserving tempered fractional diffusion in a bounded interval, Fract. Calc. Appl. Anal. 22(6) (2019), pp. 1561–1595.
  • F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang, and Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal. 16(1) (2013), pp. 9–25.
  • F. Liu, P. Zhuang, I. Turner, V. Anh, and K. Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys. 293 (2015), pp. 252–263.
  • Z. Luo and H. Wang, A highly efficient reduced-order extrapolated finite difference algorithm for time–space tempered fractional diffusion-wave equation, Appl. Math. Lett. 102 (2020), p. 106090.
  • M.M. Meerschaert, Y. Zhang, and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett. 35(17) (2008). doi:10.1029/2008GL034899.
  • R. Metzler and T.F. Nonnenmacher, Space-and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Chem. Phys. 284(1) (2002), pp. 67–90.
  • A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Vol. 23, Springer Science and Business Media, Milan, 2008.
  • J.P. Roop, Variational solution of the fractional advection dispersion equation, Ph.D. thesis, Clemson University, 2004.
  • K.M. Saad, E.H.F. AL-Shareef, A.K. Alomari, D. Baleanu, and J.F. Gomez-Aguilar, On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method, Chinese J. Phys. 63 (2020), pp. 149–162.
  • Z.Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56(2) (2006), pp. 193–209.
  • X. Sun, C. Li, and F. Zhao, Local discontinuous Galerkin methods for the time tempered fractional diffusion equation, Appl. Math. Comput. 365 (2020), pp. 124725.
  • W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84(294) (2015), pp. 1703–1727.
  • S. Vong, P. Lyu, X. Chen, and S. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algorithms 72 (2016), pp. 195–210.
  • Y.M. Wang and L. Ren, Efficient compact finite difference methods for a class of time-fractional convection-reaction-diffusion equations with variable coefficients, Int. J. Comput. Math. 96 (2018), pp. 264–297.
  • Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), pp. 1–15.
  • Y.M. Wang and T. Wang, A compact ADI method and its extrapolation for time fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions, Comput. Math. Appl.75 (2018), pp. 721–739.
  • L. Wei, Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation, Appl. Math. Comput. 304 (2017), pp. 180–189.
  • X. Wu, W. Deng, and E. Barkai, Tempered fractional Feynman-Kac equation, Phys. Rev. E. 93 (2016), p. 032151.
  • J. Yang, J. Huang, D. Liang, and Y. Tang, Numerical solution of fractional diffusion-wave equation based on fractional multistep method, Appl. Math. Model. 38(14) (2014), pp. 3652–3661.
  • C. Yaslan, Numerical solution of the conformable space-time fractional wave equation, Chinese J. Phys. 56 (2018), pp. 2916–2925.
  • M. Yousuf, K.M. Furati, A.Q.M. Khaliq, High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction–diffusion equations. Comput. Math. Appl. 80(1) (2020), pp. 204–226. https://doi.org/10.1016/j.camwa.2020.03.010.
  • Y. Yu, W. Deng, Y. Wu, and J. Wu, Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations, Appl. Numer. Math.112 (2017), pp. 126–145.
  • M.A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math. 145 (2019), pp. 429–457.
  • M.A. Zaky and J.A.T Machado, Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations, Comput. Math. Appl. 79 (2020), pp. 476–488.
  • M.A. Zaky, A.S. Hendy, and J.E. Macias-Diaz, Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions, J. Sci. Comput. 82 (2020), pp. 1–27.
  • Y. Zhang and Z.Z. Sun, Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation, J. Sci. Comput. 59 (2014), pp. 104–128.
  • H. Zhang, F. Liu, X. Jiang, F. Zeng, and I. Turner, A Crank–Nicolson ADI Galerkin–Legendre spectral method for the two-dimensional Riesz space distributed–order advection–diffusion equation, Comput. Math. Appl. 76 (2018), pp. 2460–2476.
  • Y. Zhang, Q. Li, and H. Ding, High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: Construction and application (I), Appl. Math. Comput. 329 (2018), pp. 432–443.
  • H. Zhang, X. Jiang, C. Wang, and S. Chen, Crank-Nicolson Fourier spectral methods for the space fractional nonlinear Schrodinger equation and its parameter estimation, Int. J. Comput. Math. 96 (2018), pp. 238–263.
  • Z. Zhao and C.P. Li, Fractional difference/finite element approximations for the time–space fractional telegraph equation, Appl. Math. Comput. 219 (2012), pp. 2975–2988.
  • X. Zhao, Z.Z. Sun, and Z.P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation, SIAM. J. Sci. Comput.36(6) (2014), pp. A2865–A2886.
  • L. Zhao, W. Deng, and J.S. Hesthaven, Spectral methods for tempered fractional differential equations, preprint (2016). Available at arXiv:1603.06511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.