154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristic-based finite-difference schemes for the simulation of convection–diffusion equation by the finite-difference-based lattice Boltzmann methods

Pages 1991-2007 | Received 26 Apr 2020, Accepted 13 Dec 2020, Published online: 18 Jan 2021

References

  • B. An and J. Bergada, A 8-neighbor model lattice Boltzmann method applied to mathematical-physical equations, Appl. Math. Model. 42 (2017), pp. 363–381.
  • T. Biciuska, A. Horga, and Sofonea V, Simulation of liquid–vapour phase separation on GPUs using lattice Boltzmann models with off-lattice velocity sets, Compt. Rend. Mech. 343 (2015), pp. 580–588.
  • N. Cao, S. Chen, S. Jin, and D. Martinez, Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E 55 (1997), pp. R21–R24 (Article Number R21).
  • Z. Chai, B. Shi, and L. Zheng, A unified lattice Boltzmann model for some nonlinear partial differential equations, Chaos Solitons Fractals 36 (2008), pp. 874–882.
  • A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiters, Central Eur. J. Phys. 2 (2004), pp. 382–396.
  • T. Geback and A. Heintz, A lattice Boltzmann method for the advection–diffusion equation with Neumann boundary conditions, Commun. Comput. Phys. 15 (2014), pp. 487–505.
  • I. Ginzburg, D. d'Humires, and A. Kuzmin, Optimal stability of advection–diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys. 139 (2010), pp. 1090–1143.
  • I. Ginzburg and L. Roux, Truncation effect on Taylor–Aris dispersion in lattice Boltzmann schemes: accuracy towards stability, J. Comput. Phys. 299 (2015), pp. 974–1003.
  • D. Golbert, P. Blanco, A. Clausse, and R. Feijoo, On the search of more stable second-order lattice-Boltzmann schemes in confined flows, J. Comput. Phys. 294 (2015), pp. 605–618.
  • X. Guo, B. Shi, Z. Chai, General propagation lattice Boltzmann model for nonlinear advection–diffusion equations, Phys. Rev. E 97 (2018), pp. 043310-1-043310-11.
  • Z. Guo, B. Shi, and N. Wang, Fully Lagrangian and lattice Boltzmann methods for the advection–diffusion equation, J. Sci. Comput. 14 (1999), pp. 291–300.
  • Z. Guo, C. Zheng, and T. Zhao, A lattice BGK scheme for general propagation, J. Sci. Comput. 16 (2001), pp. 569–585.
  • X. He, S. Chen, and G.D Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146 (1998), pp. 282–300.
  • D. d'Humieres and I. Ginzburg, Viscosity independent numerical errors for lattice Boltzmann models: from recurrence equations to ‘magic’ collision numbers, Comput. Math. Appl. 58 (2009), pp. 823–840.
  • H. Huang, M. Sukop, and X. Lu, Multiphase lattice Boltzmann methods theory and application, John Wiley and Sons, New York, 2015.
  • G. Krivovichev, S. Mikheev, On the stability of multi-step finite-difference-based lattice Boltzmann schemes, Int. J. Comput. Methods 16 (2019), pp. 1850087-1-1850087-19.
  • A. Kuzmin, I. Ginzburg, and A. Mohamad, The role of the kinetic parameter in the stability of two-relaxation-time advection–diffusion lattice Boltzmann schemes, Comput. Math. Appl. 61 (2011), pp. 3417–3442.
  • Q. Li, Z. Chai, and B. Shi, An efficient lattice Boltzmann model for steady convection–diffusion equation, J. Sci. Comput. 61 (2014), pp. 308–326.
  • Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog. Energy Combust. Sci. 52 (2016), pp. 62–105.
  • E. Mei and W. Shyy, On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. Comput. Phys. 143 (1998), pp. 426–448.
  • D. Patil, K. Premnath, and S. Banerjee, Multigrid lattice Boltzmann method for accelerated solution of elliptic equations, J. Comput. Phys. 265 (2014), pp. 172–194.
  • S. Ponce-Dawson, S. Chen, and G.P. Doolen, Lattice Boltzmann computation for reaction–diffusion equations, J. Chem. Phys. 98 (1993), pp. 1514–1523.
  • P. Rao and L. Schaefer, Numerical stability of explicit off-lattice Boltzmann schemes: a comparative study, J. Comput. Phys. 285 (2015), pp. 251–264.
  • M. Reider and J. Sterling, Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier–Stokes equations, Comput. Fluids 24 (1995), pp. 459–467.
  • B. Servan-Camas and F.T.-C. Tsai, Lattice Boltzmann method with two relaxation times for advection–diffusion equation: third order analysis and stability analysis, Adv. Water Resour. 31 (2008), pp. 1113–1126.
  • B. Shi, Z. Guo, Lattice Boltzmann model for nonlinear convection–diffusion equations, Phys. Rev. E 79 (2009), pp. 016701-1-016701-13.
  • V. Sofonea and R. Sekerka, Viscosity of finite difference lattice Boltzmann models, J. Comput. Phys. 184 (2003), pp. 422–434.
  • S. Succi, The lattice Boltzmann equation: for complex states of flowing matter, Oxford University Press, Oxford, 2018.
  • G. Tinoco-Guerrero, F. Dominguez-Mota, and J. Tinoco-Ruiz, A study of the stability for a generalized finite-difference scheme applied to the advection–diffusion equation, Math. Comput. Simul. 176 (2020), pp. 301–311.
  • R. van der Sman and M. Ernst, Convection–diffusion lattice Boltzmann scheme for irregular lattices, J. Comput. Phys. 160 (2000), pp. 766–782.
  • A. Velasco, J. Munor, and M. Mendoza, Lattice Boltzmann model for the simulation of the wave equation in curvilinear coordinates, J. Comput. Phys. 376 (2019), pp. 76–97.
  • H. Wang, B. Shi, H. Liang, and Z. Chai, Finite-difference lattice Boltzmann model for nonlinear convection–diffusion equations, Appl. Math. Comput. 309 (2017), pp. 334–349.
  • Z. Wang, B. Shi, X. Xiang, J. Lu, Lattice Boltzmann method for n-dimensional nonlinear hyperbolic conservation laws with the source term, Chaos 21 (2011), pp. 013120-1-013120-8.
  • D. Wolf-Gladrow, A lattice Boltzmann equation for diffusion, J. Stat. Phys. 79 (1995), pp. 1023–1032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.