279
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Discrete Legendre spectral methods for Hammerstein type weakly singular nonlinear Fredholm integral equations

, &
Pages 2251-2267 | Received 06 May 2020, Accepted 23 Jan 2021, Published online: 02 Mar 2021

References

  • M. Ahues, A. Largillier, B. Limaye, Spectral Computations for Bounded Operators, Florida: CRC Press, 2001.
  • K. Atkinson and A. Bogomolny, The discrete Galerkin method for integral equations, Math. Comput.48 (1987), pp. 595–616.
  • I. Aziz and M. Fayyaz, A new approach for numerical solution of integro-differential equations via Haar wavelets, Int. J. Comput. Math. 90(9) (2013), pp. 1971–1989.
  • I. Aziz, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math. 239 (2013), pp. 333–345.
  • I. Aziz, F. Khan, A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math. 272 (2014), pp. 70–80.
  • Z. Chen, J. Li and Y. Zhang, A fast multiscale solver for modified Hammerstein equations, Appl. Math. Comput. 218 (2011), pp. 3057–3067.
  • P. Das and G. Nelakanti, Convergence analysis of discrete Legendre spectral projection methods for Hammerstein integral equations of mixed type, Appl. Math. Comput. 265 (2015), pp. 574–601.
  • P. Das and G. Nelakanti, Error analysis of polynomial-based multi-projection methods for a class of nonlinear Fredholm integral equations, J. Appl. Math. Comput. 56 (2018), pp. 1–24.
  • P. Das, G. Nelakanti and G. Long, Discrete Legendre spectral projection methods for Fredholm–Hammerstein integral equations, J. Comput. Appl. Math. 278 (2015), pp. 293–305.
  • P. Das, M.M. Sahani, G. Nelakanti and G. Long, Legendre spectral projection methods for Fredholm–Hammerstein integral equations, J. Sci. Comput. 68 (2016), pp. 213–230.
  • P. Das, G. Nelakanti and G. Long, Discrete Legendre spectral Galerkin method for Urysohn integral equations, Int. J. Comput. Math. 95 (2018), pp. 465–489.
  • M. Golberg, Improved convergence rates for some discrete Galerkin methods, WIT Trans. Modell. Simul. 10 (1970) (1970)
  • L. Grammont and H. Kaboul, An improvement of the product integration method for a weakly singular Hammerstein equation. Preprint (2016). Available at arXiv:1604.00881.
  • S. Joe, Discrete Galerkin methods for Fredholm integral equations of the second kind, IMA J. Numer. Anal. 7 (1987), pp. 149–164.
  • K. Kant and G. Nelakanti, Jacobi spectral methods for Volterra–Urysohn integral equations of second kind with weakly singular kernels, Numer. Funct. Anal. Optim. 40 (2019), pp. 1787–1821.
  • K. Kant and G. Nelakanti, Error analysis of Jacobi–Galerkin method for solving weakly singular Volterra–Hammerstein integral equations, Int. J. Comput. Math. 97 (2020), pp. 2395–2420.
  • K. Kant and G. Nelakanti, Galerkin and multi-Galerkin methods for weakly singular Volterra–Hammerstein integral equations and their convergence analysis, Comput. Appl. Math. 39 (2020), pp. 57.
  • H. Kaneko and Y. Xu, Degenerate kernel method for Hammerstein equations, Math. Comput. 56 (1991), pp. 141–148.
  • H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for Hammerstein equations, SIAM J. Numer. Anal. 33 (1996), pp. 1048–1064.
  • H. Kaneko, R. Noren and Y. Xu, Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equ. Oper. Theory 13 (1990), pp. 660–670.
  • H. Kaneko, R.D. Noren and Y. Xu, Numerical solutions for weakly singular Hammerstein equations and their superconvergence, J. Integral Equ. Appl. 4 (1992), pp. 391–407.
  • H. Kaneko, R.D. Noren and P.A. Padilla, Superconvergence of the iterated collocation methods for Hammerstein equations, J. Comput. Appl. Math. 80 (1997), pp. 335–349.
  • H. Kaneko, P. Padilla and Y. Xu, Superconvergence of the iterated degenerate kernel method, Appl. Anal. 80 (2001), pp. 331–351.
  • R. Kress, V. Maz'ya, V. Kozlov, Vol. Linear Integral Equations, 17, Berlin: Springer, 1989.
  • R.P. Kulkarni and N. Gnaneshwar, Spectral approximation using iterated discrete Galerkin method, Numer. Funct. Anal. Optim. 23 (2002), pp. 91–104.
  • S. Kumar, Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Numer. Anal. 7 (1987), pp. 313–325.
  • S. Kumar and I.H. Sloan, A new collocation-type method for Hammerstein integral equations, Math. Comput. 48 (1987), pp. 585–593.
  • M. Mandal and G. Nelakanti, Superconvergence of Legendre spectral projection methods for Fredholm–Hammerstein integral equations, J. Comput. Appl. Math. 319 (2017), pp. 423–439.
  • M. Mandal and G. Nelakanti, Superconvergence results of Legendre spectral projection methods for Volterra integral equations of second kind, Comput. Appl. Math. 37 (2018), pp. 4007–4022.
  • M. Mandal and G. Nelakanti, Superconvergence results for weakly singular Fredholm–Hammerstein integral equations, Numer. Funct. Anal. Optim. 40 (2019), pp. 548–570.
  • M. Mandal and G. Nelakanti, Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm–Hammerstein integral equations, J. Comput. Appl. Math. 349 (2019), pp. 114–131.
  • S.G. Mikhlin, Mathematical Physics, an Advanced Course, North-Holland, 1970.
  • N. Nahid, P. Das and G. Nelakanti, Projection and multi projection methods for nonlinear integral equations on the half-line, J. Comput. Appl. Math. 359 (2019), pp. 119–144.
  • B.L. Panigrahi and G. Nelakanti, Legendre Galerkin method for weakly singular Fredholm integral equations and the corresponding eigenvalue problem, J. Appl. Math. Comput. 43 (2013), pp. 175–197.
  • I. Aziz, A.S. Al-Fhaid, An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders, J. Comput. Appl. Math. 260 (2014), pp. 449–469.
  • I.H. Sloan, Polynomial interpolation and hyperinterpolation over general regions, J. Approx. Theory83 (1995), pp. 238–254.
  • A. Spence and K. Thomas, On superconvergence properties of Galerkin's method for compact operator equations, IMA J. Numer. Anal. 3 (1983), pp. 253–271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.