194
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Convergence analysis and error estimate of second-order implicit–explicit scheme for Gray-Scott model

, ORCID Icon &
Pages 2330-2340 | Received 12 Jul 2020, Accepted 31 Jan 2021, Published online: 17 Mar 2021

References

  • H.P. Bhatt and A.Q.M. Khaliq, A compact fourth-order L-stable scheme for reaction-diffusion systems with nonsmooth data, J. Comput. Appl. Math.299 (2016), pp. 176–193.
  • A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numerical Math. 54(4) (2014), pp. 937–954.
  • C. Chiu and N. Walkington, An ADI method for hysteretic reaction–diffusion systems, SIAM. J. Numer. Anal. 34(3) (1997), pp. 1185–1206.
  • A. Doelman, T.J. Kaper, and P.A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity 10(2) (1997), pp. 523.
  • A. Doelman, R.A. Gardner, and T.J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotics approach, Phys. Nonlinear Phenomena 122(1) (1998), pp. 1–36.
  • R.I. Fernandes, B. Bialecki, and G. Fairweather, An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems on evolving domains, J. Comput. Phys. 299 (2015), pp. 561–580.
  • V. Fleury, Branching morphogenesis in a reaction–diffusion model, Phys. Rev. E 4(61) (2000), pp. 4156.
  • S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation, J. Sci. Comput.53(1) (2012), pp. 102–128.
  • P. Gray and S. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci. 38(1) (1983), pp. 29–43.
  • J. Hale, L. Peletier, and W.C. Troy, Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis, SIAM. J. Appl. Math. 61(1) (2000), pp. 102–130.
  • R.A. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.-C.J. Chang, S.B. Baden, T.J. Sejnowski, and J.R. Stiles, Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces, SIAM. J. Sci. Comput. 30(6) (2008), pp. 3126–3149.
  • H.G. Lee, A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations, J. Comput. Appl. Math. 333 (2018), pp. 395–403.
  • B. Liu, R. Wu, N. Iqbal, and L. Chen, Turing patterns in the Lengyel–Epstein system with superdiffusion, Int. J. Bifurcation Chaos 27(08) (2017), pp. 1730026.
  • W. Mazin, K. Rasmussen, E. Mosekilde, P. Borckmans, and G. Dewel, Pattern formation in the bistable Gray-Scott model, Math. Comput. Simul. 40(3–4) (1996), pp. 371–396.
  • J.S. McGough and K. Riley, Pattern formation in the Gray–Scott model, Nonlinear Analysis: Real World Applications 5(1) (2004), pp. 105–121.
  • R.P. Munafo, Stable localized moving patterns in the 2-D Gray-Scott model, arXiv, 2014.
  • A. Mustafa and H.P. Bhatt, Fast and accurate high-order method for high dimensional space-fractional reaction-diffusion equation with general boundary conditions, arXiv:2003.13569v1 1-25, 2020.
  • G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems, Wiley, New York, 1977.
  • J.E. Pearson, Complex patterns in a simple system, Science 261(5118) (1993), pp. 189–192.
  • I. Sgura, B. Bozzini, and D. Lacitignola, Numerical approximation of turing patterns in electrodeposition by ADI methods, J. Comput. Appl. Math. 236(16) (2012), pp. 4132–4147.
  • F. Shakeri and M. Dehghan, The finite volume spectral element method to solve turing models in the biological pattern formation, Comput. Math. Appl. 62(12) (2011), pp. 4322–4336.
  • A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B.
  • J.A. Vastano, J.E. Pearson, W. Horsthemke, and H.L. Swinney, Chemical pattern formation with equal diffusion coefficients, Phys. Lett. A 124(6) (1987), pp. 320–324.
  • T. Wang, F. Song, H. Wang, and G.E. Karniadakis, Fractional Gray–Scott model: Well-posedness, discretization, and simulations, Comput. Methods. Appl. Mech. Eng. 347 (2019), pp. 1030–1049.
  • Y.N. Wu, P.J. Wang, C.J. Liu, and Z.-C. Zhu, Turing patterns in a reaction–diffusion system, Commun. Theor. Phys. 44 (2006), pp. 761–764.
  • J. Zhang and X. Yang, A fully decoupled, linear and unconditionally energy stable numerical scheme for a melt-convective phase-field dendritic solidification model, Comput. Methods. Appl. Mech. Eng. 363 (2020), p. 112779. 23.
  • K. Zhang, J.C.-F. Wong, and R. Zhang, Second–order implicit–explicit scheme for the Gray–Scott model, J. Comput. Appl. Math. 213(2) (2008), pp. 559–581.
  • H. Zhang, X. Jiang, F. Zeng, and G.E. Karniadakis, A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations, J. Comput. Phys. 405 (2020), pp. 109141.
  • J. Zhang, J. Zhao, and Y. Gong, Error analysis of full-discrete invariant energy quadratization schemes for the Cahn-Hilliard type equation, J. Comput. Appl. Math. 372 (2020), p. 112719. 15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.