153
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Iterative regularization methods for solving equilibrium problems

, &
Pages 2533-2563 | Received 14 Jun 2020, Accepted 09 Feb 2021, Published online: 09 Apr 2021

References

  • Y.I. Alber and I. Ryazantseva, Nonlinear Ill-posed Problems of Monotone Type, Springer, Dordrecht, 2006.
  • P.N. Anh, J.K. Kim, and L.D. Muu, An extragradient algorithm for solving bilevel pseudomonotone variational inequalities, J. Glob. Optim. 52 (2012), pp. 627–639.
  • A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.
  • H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
  • M. Bianchi and S. Schaible, Generalized monotone bifuntions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), pp. 31–43.
  • G. Bigi, M. Castellani, M. Pappalardo, and M. Passacantando, Nonlinear Programming Techniques for Equilibria, Springer, Switzerland, 2019.
  • E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), pp. 123–145.
  • R.W. Cottle and J.C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl. 75 (1992), pp. 281–295.
  • S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, New York, 2002.
  • S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization 52 (2003), pp. 333–359.
  • S. Dempe, V. Kalashnikov, G.A. Pérez-Valdés, and N. Kalashnykova, Bilevel Programming Problems, Springer, Berlin, 2015.
  • B.V. Dinh, P.G. Hung, and L.D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim. 35 (2014), pp. 539–563.
  • F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin, 2002.
  • K. Fan, A minimax inequality and applications, in Inequality III, O. Shisha ed. Academic Press, New York, 1972, pp. 103–113.
  • S.D. Flam and A.S. Antipin, Equilibrium programming and proximal-like algorithms, Math. Program.78 (1997), pp. 29–41.
  • K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
  • D.V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal. 21 (2016), pp. 478–501.
  • D.V. Hieu, Strong convergence of a new hybrid algorithm for fixed point problems and equilibrium problems, Math. Model. Anal. 24 (2019), pp. 1–19.
  • D.V. Hieu, An explicit parallel algorithms for variational inequalities, Bull. Malays. Math. Sci. Soc.42 (2019), pp. 201–221.
  • D.V. Hieu and A. Moudafi, Regularization projection method for solving bilevel variational inequality problem, Optim. Lett. 15 (2021), pp. 205 –229. DOI:https://doi.org/10.1007/s11590-020-01580-5.
  • D.V. Hieu and J.J. Strodiot, Strong convergence theorems for equilibrium problems and fixed point problems in Banach spaces, J. Fixed Point Theory Appl. 20(131) (2018), pp. 1–32.
  • D.V. Hieu, P.K. Anh, and L.D. Muu, Strong convergence of subgradient extragradient method with regularization f or solving variational inequalities, Optim. Eng. (2020). DOI:https://doi.org/10.1007/s11081-020-09540-9.
  • D.V. Hieu, Y.J. Cho, and Y.B. Xiao, Modified extragradient algorithms for solving equilibrium problems, Optimization 67 (2018), pp. 2003–2029.
  • D.V. Hieu, Y.J. Cho, and Y.B. Xiao, Golden ratio algorithms with new stepsize rules for variational inequalities, Math. Methods Appl. Sci. 42 (2019), pp. 6067–6082. DOI:https://doi.org/10.1002/mma.5703.
  • D.V. Hieu, P.K. Quy, and L.V. Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo 56 (2019). 11 pp.
  • D.V. Hieu, L.D. Muu, H.N. Duong, and B.H. Thai, Strong convergence of new iterative projection methods with regularization for solving monotone variational inequalities in Hilbert spaces, Math. Methods Appl. Sci. 43 (2020), pp. 9745–9765. DOI:https://doi.org/10.1002/mma.6647.
  • D.V. Hieu, L.D. Muu, P.K. Quy, and L.V. Vy, Explicit extragradient-like method with regularization for variational inequalities, Res. Math. 74 (2019), pp. 137.
  • D.V. Hieu, J.J. Strodiot, and L.D. Muu, Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math. 376 (2020), pp. 112844. DOI:https://doi.org/10.1016/j.cam.2020.112844.
  • D.V. Hieu, Y.J. Cho, Y-B. Xiao, and P. Kumam, Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces, Vietnam J. Math. (2020). DOI: https://doi.org/10.1007/s10013-020-00447-7.
  • P.G. Hung and L.D. Muu, The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions, Nonlinear Anal. 74 (2011), pp. 6121–6129.
  • P.G. Hung and L.D. Muu, On inexact Tikhonov and proximal point regularization methods for pseudomonotone equilibrium problems, Vietnam J. Math. 40 (2012), pp. 255–274.
  • E.V. Khoroshilova, Extragradient-type method for optimal control problem with linear constraints and convex objective function, Optim. Lett. 7 (2013), pp. 1193–1214.
  • I.V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001.
  • I.V. Konnov, Application of the proximal point method to nonmonotone equilibrium problems, J. Optim. Theory Appl. 119 (2003), pp. 317–333.
  • I.V. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam, 2007.
  • I.V. Konnov, Regularization methods for nonmonotone equilibrium problems, J. Nonlinear Convex Anal. 10 (2009), pp. 93–101.
  • P.E. Maingé and A. Moudafi, Coupling viscosity methods with the extragradient algorithm for solving equilibrium problems, J. Nonlinear Convex Anal. 9 (2008), pp. 283–294.
  • G. Mastroeni, On auxiliary principle for equilibrium problems, Publ. Dipart. Math. Univer. Pisa 3 (2000), pp. 1244–1258.
  • A. Moudafi, Proximal point algorithm extended to equilibrium problem, J. Nat. Geom. 15 (1999), pp. 91–100.
  • L.D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), pp. 1159–1166.
  • T.T.V. Nguyen, J.J. Strodiot, and V.H. Nguyen, Hybrid methods for solving simultaneously an equilibrium problem and countably many fixed point problems in a Hilbert space, J. Optim. Theory Appl. 160 (2014), pp. 809–831.
  • A. Pietrus, T. Scarinci, and V. Veliov, High order discrete approximations to Mayer's problems for linear systems, SIAM J. Control Optim. 56 (2016), pp. 102–119.
  • T.D. Quoc, L.D. Muu, and V.H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), pp. 749–776.
  • P. Santos and S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math. 30 (2011), pp. 91–107.
  • M. Seydenschwanz, Convergence results for the discrete regularization of linear-quadratic control problems with bang-bang solutions, Comput. Optim. Appl. 629 (2015), pp. 731–760.
  • Q. Shu, M. Sofonea, and Y.B. Xiao, Tykhonov well-posedness of split problems. J. Inequal. Appl. 153 (2020). DOI:https://doi.org/10.1186/s13660-020-02421-w.
  • M. Sofonea and Y.B. Xiao, Tykhonov well-posedness of elliptic variational-hemivariational inequalities, Electron. J. Differ. Equ. 2019(64) (2019), pp. 1–19.
  • M. Sofonea, Y.B. Xiao, and S.D. Zeng, Generalized penalty method for history-dependent variational-hemivariational inequalities, submitted.
  • J.J. Strodiot, T.T.V. Nguyen, and V.H. Nguyen, A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems, J. Glob. Optim. 56 (2013), pp. 373–397.
  • J.J. Strodiot, P.T. Vuong, and T.T.V. Nguyen, A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces, J. Glob. Optim. 64 (2016), pp. 159–178.
  • P.T. Vuong, J.J. Strodiot, and V.H. Nguyen, On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space, Optimization 64 (2015), pp. 429–451.
  • H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), pp. 109–113.
  • I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. I. Yamada: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, in Inherently Parallel Algorithms for Feasibility and Optimization and their Applications, D. Butnariu, Y. Censor, and S. Reich, eds., Elsevier, Amsterdam, 2001, pp. 473–504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.