227
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Kadomtsev–Petviashvili hierarchy reduction, soliton and semi-rational solutions for the (3+1)-dimensional generalized variable-coefficient shallow water wave equation in a fluid

ORCID Icon, , , , , & show all
Pages 407-425 | Received 01 Aug 2020, Accepted 30 Mar 2021, Published online: 12 May 2021

References

  • H.M. Baskonus, T.A. Sulaiman, and H. Bulut, New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev–Petviashvili hierarchy equations, Indian J. Phys.91(10) (2017), pp. 1237–1243.
  • R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71(11) (1993), pp. 1661–1664.
  • W.Q. Chen, Q.F. Guan, C.F. Jiang, F.F. Zhang, and L. Wang, Nonautonomous motion study on accelerated and decelerated lump waves for a (3+1)-Dimensional generalized shallow water wave equation with variable coefficients, Complexity 2019 (2019), pp. 6287461.
  • G.F. Deng, Y.T. Gao, C.C. Ding, and J.J. Su, Solitons and breather waves for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics, Chaos Solitons Fract. 140 (2020), pp. 110085.
  • G.F. Deng, Y.T. Gao, J.J. Su, C.C. Ding, and T.T. Jia, Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics, Nonlinear Dyn. 99 (2020), pp. 1039–1052.
  • C.C. Ding, Y.T. Gao, and G.F. Deng, Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves, Nonlinear Dyn. 97(4) (2019), pp. 2023–2040.
  • C. C. Ding, Y.T. Gao, G.F. Deng, D. Wang, Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma, Chaos Solitons Fract. 133 (2020), pp. 109580.
  • V. Duchêne, Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal. 42(5) (2010), pp. 2229–2260.
  • B.F. Feng, General N-soliton solution to a vector nonlinear Schrödinger equation, J. Phys. A47(35) (2014), pp. 355203.
  • Y.J. Feng, Y.T. Gao, L.Q. Li, and T.T. Jia, Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics, Eur. Phys. J. Plus 135 (2020), pp. 272.
  • Y.J. Feng, Y.T. Gao, T.T. Jia, and L.Q. Li, Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows, Mod. Phys. Lett. B 33(29) (2019), pp. 1950354.
  • X.Y. Gao, Y.J. Guo, W.R. Shan, Water-wave symbolic computation for the earth, enceladus and titan: The higher-order Boussinesq–Burgers system, auto-and non-auto-Bäcklund transformations, Appl. Math. Lett. 104 (2020), pp. 106170.
  • X.Y. Gao, Y.J. Guo, W.R. Shan, Shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system, Chaos Solitons Fract. 138 (2020), pp. 109950.
  • S. Ghader and J. Nordström, Revisiting well-posed boundary conditions for the shallow water equations, Dyn. Atmos. Oceans 66 (2014), pp. 1–9.
  • J.L. Guirao, H.M. Baskonus, A. Kumar, M.S. Rawat, G. Yel, Complex patterns to the (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation, Symmetry 12(1) (2020), pp. 17.
  • R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press, New York, 2004.
  • K. Hosseini, M. Samavat, Mo. Mirzazadeh, W.X. Ma, and Z. Hammouch, A new (3+1)-dimensional hirota bilinear equation: its Bäcklund transformation and rational-type solutions, Regul. Chaotic Dyn. 25(4) (2020), pp. 383–391.
  • A. Houwe, J. Sabi'u, Z. Hammouch, and S.Y. Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr. 95(4) (2020), pp. 045203.
  • L. Hu, Y.T. Gao, S.L. Jia, J.J. Su, G.F. Deng, Solitons for the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique, Mod. Phys. Lett. B 33 (2019), pp. 1950376;  L. Hu, Y.T. Gao, T.T. Jia, G.F. Deng and L.Q. Li, Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique, Z. Angew. Math. Phys. 72 (2021), pp. 75.
  • Q.M. Huang and Y.T. Gao, Bilinear form, bilinear Bäcklund transformation and dynamic features of the soliton solutions for a variable-coefficient (3+1)-dimensional generalized shallow water wave equation, Mod. Phys. Lett. B 31(22) (2017), pp. 1750126.
  • Q.M. Huang, Y.T. Gao, S.L. Jia, Y.L. Wang, and G.F. Deng, Bilinear Bäcklund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation, Nonlinear Dyn. 87(4) (2017), pp. 2529–2540.
  • Y.L. Ji and Z.H. Huo, Well-posedness for the fifth-order shallow water equations, J. Differ. Equat.246(6) (2009), pp. 2448–2467.
  • T.T. Jia, Y.T. Gao, G.F. Deng, and L. Hu, Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons, Nonlinear Dyn. 98(1) (2019), pp. 269–282.
  • T.T. Jia, Y.T. Gao, X. Yu, and L.Q. Li, Lax pairs, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero–Bogoyavlenskii–Schiff-type equation, Appl. Math. Lett.114 (2021), pp. 106702.
  • M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci.19(3) (1983), pp. 943–1001.
  • L.Q. Li, Y.T. Gao, L. Hu, T.T. Jia, C.C. Ding, and Y.J. Feng, Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation, Nonlinear Dyn. 100 (2020), pp. 2729–2738.
  • Y.Z. Li and J.G. Liu, Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation, Pramana J. Phys. 90(6) (2018), pp. 71.
  • F.Y. Liu, Y.T. Gao, X. Yu, C.C. Ding, G.F. Deng, T.T. Jia, Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation in fluid mechanics, Chaos Solitons Fract. 144 (2021), pp. 110559; F.Y. Liu, Y.T. Gao, X. Yu, L.Q. Li, C.C. Ding, and D. Wang, Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in fluid mechanics and plasma physics, Eur. Phys. J. Plus (2021) in press, Ms. No. EPJP-D-20-03633R2.
  • J.G. Liu and Y. He, New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation, Nonlinear Dyn. 90(1) (2017), pp. 363–369.
  • W. Liu, A.M. Wazwaz, and X.X. Zheng, Families of semi-rational solutions to the Kadomtsev–Petviashvili I equation, Commun. Nonlinear Sci. Numer. Simulat. 67 (2019), pp. 480–491.
  • J.G. Liu and W.H. Zhu, Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans, Comput. Math. Appl. 78(3) (2019), pp. 848–856.
  • J.G. Liu, W.H. Zhu, Y. He, and Z.Q. Lei, Characteristics of lump solutions to a (3+ 1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science, Eur. Phys. J. Plus 134(8) (2019), pp. 385.
  • J. Manafian, S.A. Mohammed, A. Alizadeh, H.M. Baskonus, and W. Gao, Investigating lump and its interaction for the third-order evolution equation arising propagation of long waves over shallow water, Eur. J. Mech. B-Fluid. 84 (2020), pp. 289–301.
  • X.H. Meng, Rational solutions in Grammian form for the (3+1)-dimensional generalized shallow water wave equation, Comput. Math. Appl. 75(12) (2018), pp. 4534–4539.
  • Y.S. Mi and D.W. Huang, Well-posedness and continuity properties of the new shallow-water model with cubic nonlinearity, Ann. Mat. Pur. Appl. 200 (2020), pp. 1–34.
  • S. Miyake, Y. Ohta, and J. Satsuma, A representation of solutions for the KP hierarchy and its algebraic structure, J. Phys. Soc. Jpn. 59(1) (1990), pp. 48–55.
  • Y. Ohta, D.S. Wang, and J. Yang, General N Dark–Dark solitons in the coupled nonlinear Schrödinger equations, Stud. Appl. Math. 127(4) (2011), pp. 345–371.
  • Y. Ohta and J. Yang, General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation, Proc. R. Soc. A 468(2142) (2012), pp. 1716–1740.
  • J.J. Su, Y.T. Gao, G.F. Deng, and T.T. Jia, Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow, Phys. Rev. E 100(4) (2019), pp. 042210.
  • J.J. Su, Y.T. Gao, and C.C. Ding, Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows, Appl. Math. Lett. 88 (2019), pp. 201–208.
  • Y. Sun, B. Tian, L. Liu, H.P. Chai, and Y.Q. Yuan, Rogue waves and lump solitons of the (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves, Commun. Theor. Phys. 68(6) (2017), pp. 693.
  • Y. Sun, B. Tian, Y.Q. Yuan, Z. Du, Semi-rational solutions for a (2+1)-dimensional Davey–Stewartson system on the surface water waves of finite depth, Nonlinear Dyn. 94(4) (2018), pp. 3029–3040.
  • M.F. Uddin, M.G. Hafez, Z. Hammouch, and D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness, Wave. Random Complex 65 (2020), pp. 1–15.
  • A.M. Wazwaz, Multiple-soliton solutions for extended (3+1)-dimensional Jimbo–Miwa equations, Appl. Math. Lett. 64 (2017), pp. 21–26.
  • G. Yel, H.M. Baskonus, and W. Gao, New dark-bright soliton in the shallow water wave model, AIMS Math. 5(4) (2020), pp. 4027–4044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.