1,641
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Identification and prediction of time-varying parameters of COVID-19 model: a data-driven deep learning approach

, &
Pages 1617-1632 | Received 10 Feb 2021, Accepted 04 May 2021, Published online: 27 May 2021

References

  • S.I. Amari, Backpropagation and stochastic gradient descent method, Neurocomputing 5 (1993), pp. 185–196.
  • J.M. Carcione, J.E. Santos, C. Bagaini, and J. Ba, A simulation of a COVID-19 epidemic based on a deterministic SEIR model, preprint (2020). Available at arXiv:2004.03575.
  • Y.C. Chen, P.E. Lu, C.S. Chang, and T.H. Liu, A time-dependent SIR model for COVID-19 with undetectable infected persons, IEEE Trans. Netw. Sci. Eng. 7 (2020), pp. 3279–3294.
  • G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst 2 (1989), pp. 303–314.
  • H. Fan, M. Jiang, L. Xu, H. Zhu, J. Cheng, and J. Jiang, Comparison of long short term memory networks and the hydrological model in runoff simulation, Water 12 (2020), p. 175.
  • L. Ferrari, G. Gerardi, G. Manzi, A. Micheletti, F. Nicolussi, and S. Salini, Modelling provincial COVID-19 epidemic data in Italy using an adjusted time-dependent SIRD model, preprint (2020). Available at arXiv:2005.12170.
  • I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Cambridge: MIT Press, 2016. Available at http://www.deeplearningbook.org.
  • D.L. Gray and A.N. Michel, A training algorithm for binary feedforward neural networks, IEEE Trans. Neural Netw. 3 (1992), pp. 176–194.
  • T.A.M. Group, The COVID tracking project, preprint (2020). Available at https://covidtracking.com/data/download.
  • D. Guanghong, L. Chang, G. Jianqiu, W. Ling, C. Ke, and Z. Di, SARS epidemical forecast research in mathematical model, Chin. Sci. Bull. 49 (2004), pp. 2332–2338.
  • R.J. Hatchett, C.E. Mecher, and M. Lipsitch, Public health interventions and epidemic intensity during the 1918 influenza pandemic, Proc. Natl. Acad. Sci. 104 (2007), pp. 7582–7587.
  • S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997), pp. 1735–1780.
  • H. Jo, H. Son, S.Y. Jung, and H.J. Hwang, Analysis of COVID-19 spread in South Korea using the SIR model with time-dependent parameters and deep learning, preprint (2020). Available at medRxiv.
  • A. Kergassner, C. Burkhardt, D. Lippold, S. Nistler, M. Kergassner, P. Steinmann, D. Budday, and S. Budday, Meso-scale modeling of COVID-19 spatio-temporal outbreak dynamics in Germany, preprint (2020). Available at medRxiv.
  • W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A 115 (1927), pp. 700–721.
  • D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint (2017). Available at arXiv:1412.6980v9.
  • Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, M. H. Wang, Y. Cai, W. Wang, L. Yang, and D. He, A conceptual model for the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis. 93 (2020), pp. 211–216.
  • Z. Liu, P. Magal, O. Seydi, and G. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data, Math. Biosci. Eng. 17 (2020), pp. 3040–3051.
  • L. Lu, X. Meng, Z. Mao, and G.E. Karniadakis, DeepXDE: A deep learning library for solving differential equations, preprint (2020). Available at arXiv:1907.04502v2.
  • L. Magri and N.A.K. Doan, First-principles machine learning modelling of COVID-19, preprint (2020). Available at arXiv:2004.09478.
  • M. Raissi, N. Ramezani, and P. Seshaiyer, On parameter estimation approaches for predicting disease transmission through optimization, deep learning and statistical inference methods, Lett. Biomath. 6 (2019), pp. 1–26.
  • M. Raissi, P. Perdikaris, and G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019), pp. 686–707.
  • M. Rafiq, J. Macías-Díaz, A. Raza, and N. Ahmed, Design of a nonlinear model for the propagation of COVID-19 and its efficient nonstandard computational implementation, Appl. Math. Model. 89 (2021), pp. 1835–1846.
  • B. Ridenhour, J.M. Kowalik, and D.K. Shay, Unraveling R0: Considerations for public health applications, Am. J. Public Health 108 (2018), pp. S445–S454.
  • F. Shahid, A. Zameer, and M. Muneeb, Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM, Chaos Solitons Fractals 140 (2020), p. 110212.
  • Y. Shi, Stochastic dynamic model of SARS spreading, Chin. Sci. Bull. 48 (2003), pp. 1287–1292.
  • Y. Shin, J. Darbon, and G.E. Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes, preprint (2020). Available at arXiv:2004.01806.
  • S.O. Sowole, D. Sangare, A.A. Ibrahim, and I.A. Paul, On the existence, uniqueness, stability of solution and numerical simulations of a mathematical model for measles disease, Int. J. Adv. Math. 4 (2019), pp. 84–111.
  • P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model. 2 (2017), pp. 288–303.
  • J. Wang, A.J. McMichael, B. Meng, N.G. Becker, W. Han, K. Glass, J. Wu, X. Liu, J. Liu, X. Li, and X. Zheng, Spatial dynamics of an epidemic of severe acute respiratory syndrome in an urban area, Bull. World Health Organ. 84 (2006), pp. 965–968.
  • H. Wang, Z. Wang, Y. Dong, R. Chang, C. Xu, X. Yu, S. Zhang, L. Tsamlag, M. Shang, J. Huang, and Y. Wang, Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China, Cell. Discov. 6 (2020), pp. 1–8.
  • World Health Organizaiton, Rolling updates on coronavirus disease (COVID-19), preprint (2020). Available at https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed 31 July 2020).
  • Worldometers, COVID-19 coronavirus pandemic, preprint (2020). Available at https://www.worldometers.info/coronavirus/?#countries.
  • Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, J. Liang, X. Liu, S. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F. Li, S. Luo, Y. Xie, B. Liu, Z. Wang, S. Zhang, Y. Wang, N. Zhong, and J. He, Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions, J. Thorac. Dis. 12 (2020), pp. 165–174.
  • A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, Deep learning methods for forecasting COVID-19 time-series data: A comparative study, Chaos Solitons Fractals 140 (2020), pp. 110121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.