1,361
Views
2
CrossRef citations to date
0
Altmetric
Articles

On the reliable and efficient numerical integration of the Kuramoto model and related dynamical systems on graphs

, ORCID Icon &
Pages 31-57 | Received 13 Feb 2021, Accepted 30 Jun 2021, Published online: 30 Jul 2021

References

  • J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1) (2005), pp. 137–185.
  • A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3) (2008), pp. 93–153.
  • C. Bick, T. Böhle, and C. Kuehn, Multi-population phase oscillator networks with higher-order interactions, 2020. pp. 1–30. arXiv:2012.04943.
  • S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration, London, New York: CRC Press, 2016.
  • V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech.: Theory Exp. 10 (2008), pp. P10008.
  • H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergod. Theory Dyn. Syst. 35(3) (2013), pp. 762–834.
  • A. Clauset, M.E.J. Newman, and C. Moore, Finding community structure in very large networks, Phys. Rev. E. 70(6) (2004), pp. 066111.
  • F. Cucker and S. Smale, Emergent behavior in flocks, IEEE. Trans. Automat. Contr. 52(5) (2007), pp. 852–862.
  • H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function, Phys D: Nonlin. Phenom. 91(1–2) (1996), pp. 24–66.
  • F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica 50(6) (2014), pp. 1539–1564.
  • H. Dietert, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl. 105(4) (2016), pp. 451–489.
  • B. Fernandez, D. Gérard-Varet, and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré 17(7) (2016), pp. 1793–1823.
  • M. Girvan and M.E. Newman, Community structure in social and biological networks, Proc. Nat. Acad. Sci. USA 99(12) (2002), pp. 7821–7826.
  • D. Golomb, D. Hansel, and G. Mato, Mechanisms of synchrony of neural activity in large networks, Handbook of Biological Phys 4 (2001), pp. 887–968.
  • T. Gross and H. Sayama, Adaptive Networks: Theory, Models and Applications, Berlin, Heidelberg: Springer, 2009.
  • S.Y. Ha, H.K. Kim, and S.W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci. 14(4) (2016), pp. 1073–1091.
  • A.A. Hagberg, D.A. Schult, and P.J. Swart, Exploring network structure, dynamics, and function using NetworkX, 7th Python in Science Conference; 2008. p. 11–15.
  • P. Holme and J. Saramäki, Temporal networks, Phys. Rep. 519(3) (2011), pp. 97–125.
  • A. Iserles and G.R.W. Quispel, Why Geometric Numerical Integration?, in: K. Ebrahimi-Fard, M. Barbero Liñán, eds, Springer Proceedings in Mathematics & Statistics, 267, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, Springer, 2018, pp. 1–28.
  • E.M. Izhikevich, Phase equations for relaxation oscillators, SIAM J. Appl. Math. 60(5) (2000), pp. 1789–1804.
  • I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis, Comm. Math. Sci. 1(4) (2003), pp. 715–762.
  • N. Kopell and D. Somers, Anti-phase solutions in relaxation oscillators coupled through excitatory interactions, J. Math. Biol. 33(3) (1995), pp. 261–280.
  • Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Vol. 19, Springer Series in Synergetics, Springer, 1984.
  • E.A. Leicht and M.E.J. Newman, Community structure in directed networks, Phys. Rev. Lett. 100(11) (2008), pp. 118703.
  • R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Aut. Control 49(9) (2004), pp. 1520–1533.
  • A.S. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization, CUP, 2001.
  • P. Pons and M. Latapy, Computing Communities in Large Networks Using Random Walks, in Computer and Information Sciences, P. Yolum, T. Güngör, F. Gürgen, C. Özturan, eds., Heidelberg: Springer, 2005, pp. 284–293.
  • M.A. Porter and J.P. Gleeson, Dynamical Systems on Networks: A Tutorial, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, Springer, 2016.
  • M.A. Porter, J.P. Onnela, and P.J. Mucha, Communities in networks, Notices Amer. Math. Soc. 56(9) (2009), pp. 1082–1097.
  • J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a potts model, Phys. Rev. Lett. 93(21) (2004), pp. 19–22.
  • J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E. 74(1) (2006), pp. 016110.
  • F.A. Rodrigues, T.K.D. Peron, P. Ji, and J. Kurths, The Kuramoto model in complex networks, Phys. Rep. 610 (2016), pp. 1–98.
  • G. Rossetti, L. Milli, and R. Cazabet, CDLIB: A python library to extract. compare and evaluate communities from complex networks, Appl. Netw. Sci. 4(1) (2019), pp. 00–00.
  • J. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT 28(4) (1988), pp. 877–883.
  • J. Sanz-Serna and M. Calvo, Numerical Hamiltonian Problems, London, New York: Chapman & Hall, 1994.
  • P.S. Skardal and A. Arenas, Higher-order interactions in complex networks of phase oscillators promote abrupt synchronization switching, Common. Phys. 3(1) (2020), pp. 1–6.
  • S.H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena 143(14) (2000), pp. 1–20.
  • S.H. Strogatz and R.E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys. 63(3–4) (1991), pp. 613–635.
  • V.A. Traag, G. Krings, and P. Van Dooren, Significant scales in community structure, Sci. Rep. 3(1) (2013), pp. 2930.
  • A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1) (1967), pp. 15–42.