588
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An efficient algorithm to compute the X-ray transform

, , &
Pages 1325-1343 | Received 27 Jan 2021, Accepted 31 Jul 2021, Published online: 26 Aug 2021

References

  • J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse. Probl. 33 (2017), p. 124007.
  • G. Ambartsoumian and E.T. Quinto, Generalized Radon transforms and applications in tomography, Inverse. Probl. 36 (2019), p. 020301.
  • S. Arridge, P. Maass, O. Öktem, and C.B. Schönlieb, Solving inverse problems using data-driven models, Acta Numer. 28 (2019), pp. 1–174.
  • M. Burger, H. Dirks, L. Frerking, A. Hauptmann, T. Helin, and S. Siltanen, A variational reconstruction method for undersampled dynamic x-ray tomography based on physical motion models, Inverse. Probl. 33 (2017), p. 124008.
  • P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, IEEE. Trans. Image. Process. 6 (1997), pp. 298–311.
  • C. Chen, B. Gris, and O. Öktem, A new variational model for joint image reconstruction and motion estimation in spatiotemporal imaging, SIAM. J. Imaging. Sci. 12 (2019), pp. 1686–1719.
  • C. Chen and G. Xu, A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view X-ray computed tomography, Comput. Math. Appl. 71 (2016), pp. 1537–1559.
  • S.R. Cherry, J.A. Sorenson, and M.E. Phelps, Physics in Nuclear Medicine, 4th ed., Philadelphia: Elsevier, 2012.
  • B. De Man and S. Basu, Distance-driven projection and backprojection in three dimensions, Phys. Med. Biol. 49 (2004), pp. 2463–2475.
  • S.R. Deans, The Radon Transform and Some of Its Applications, John Wiley & Sons, New York, 1983.
  • A.H. Delaney and Y. Bresler, Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography, IEEE. Trans. Image. Process. 7 (1998), pp. 204–221.
  • B. Dong, J. Li, and Z. Shen, X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting, J. Sci. Comput. 54 (2013), pp. 333–349.
  • J. Frank, Electron Tomography: Methods for Three-dimensional Visualization of Structures in the Cell, New York: Springer Verlag, 2006.
  • J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State, New York: Oxford University Press, 2006.
  • H. Gao, Fast parallel algorithms for the x-ray transform and its adjoint, Med. Phys.39 (2012), pp. 7110–7120.
  • G. Han, Z. Liang, and J. You, A Fast Ray-Tracing Techniques for TCT and ECT Studies, Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE, 1999, pp. 1515–1518, Seattle.
  • S. Helgason, The Radon Transform, 2nd ed., Birkhäuser, Boston, 1999.
  • J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2nd ed., Bellingham: SPIE Press, 2009.
  • J. Hsieh, B. Nett, Z. Yu, K. Sauer, J. Thibault, and C. Bouman, Recent advances in CT image reconstruction, Curr. Radiol. Rep. 1 (2013), pp. 39–51.
  • J. Ilmavirta, O. Koskela, and J. Railo, Torus computed tomography, SIAM J. Appl. Math. 80 (2020), pp. 1947–1976.
  • F. Jacobs, E. Sundermann, B. De Sutter, M. Christiaens, and I. Lemahieu, A fast algorithm to calculate the exact radiological path through a pixel or voxel space, J. Comput. Inf. Technol. 6 (1998), pp. 89–94.
  • M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction, IEEE. Trans. Med. Imaging. 22 (2003), pp. 569–579.
  • A.C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, SIAM, Philadelphia, 2001.
  • A. Katsevich, Resolution analysis of inverting the generalized radon transform from discrete data in R3, SIAM J. Math. Anal. 52 (2020), pp. 3990–4021.
  • M. Li, G. Xu, C.O.S. Sorzano, F. Sun, and C.L. Bajaj, Single-particle reconstruction using L2-gradient flow, J. Struct. Biol. 176 (2011), pp. 259–267.
  • W. Li, K. Ren, and D. Rim, A range characterization of the single-quadrant ADRT, 2020. ArXiv e-prints 2010.05360.
  • R. Liu, L. Fu, B. De Man, and H. Yu, GPU-based branchless distance-driven projection and backprojection, IEEE. Trans. Comput. Imaging. 3 (2017), pp. 617–632.
  • Y. Long, J.M. Fessler, and M. Balter, 3-D forward and back-projection for x-ray CT using separable footprints, IEEE Trans. Med. Imaging 29 (2010), pp. 1839–1850.
  • F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 2001.
  • S. Ramani and J. Fessler, A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction, IEEE. Trans. Med. Imaging. 31 (2012), pp. 677–688.
  • R.L. Siddon, Fast calculation of the exact radiological path for a three-dimensional ct array, Med. Phys. 12 (1985), pp. 252–255.
  • E. Sidky, J. Jørgensen, and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm, Phys. Med. Biol. 57 (2012), p.3065.
  • E. Sidky, C. Kao, and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, J. Xray. Sci. Technol. 14 (2006), pp. 119–139.
  • J. Thibault, K. Sauer, C. Bouman, and J. Hsieh, A three-dimensional statistical approach to improved image quality for multislice helical CT, Med. Phys. 34 (2007), pp. 4526–4544.
  • W. van Aarle, W.J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K.J. Batenburg, and J. Sijbers, Fast and flexible X-ray tomography using the ASTRA toolbox, Opt. Express. 24 (2016), pp. 25129–25147.
  • G. Xu and C. Chen, Blended finite element method and its convergence for three-dimensional image reconstruction using l2-gradient flow, Commun. Math. Sci. 12 (2014), pp. 989–1015.
  • H. Zhao and A.J. Reader, Fast Ray-Tracing Technique to Calculate Line Integral Paths in Voxel Arrays, Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE, 2003, pp. 2808–2812, Portland.
  • W. Zhuang, S.S. Gopal, and T.J. Hebert, Numerical evaluation of methods for computing tomographic projections, IEEE. Trans. Nucl. Sci. 41 (1994), pp. 1660–1665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.