213
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of high-dimensional two-component reaction–diffusion systems with fractional derivatives

Pages 47-68 | Received 09 Sep 2021, Accepted 07 Dec 2021, Published online: 04 Jun 2022

References

  • L. Aceto and P. Novati, Rational approximation to the fractional Laplacian operator in reaction-diffusion problems, SIAM J. Sci. Comput. 39(1) (2017), pp. A214–A228.
  • M. Almushaira, H. Bhatt, and A.M. Al-rassas, Fast high-order method for multi-dimensional space-fractional reaction-diffusion equations with general boundary conditions, Math. Comput. Simul.182 (2021), pp. 235–258.
  • S.S. Alzahrani and A.Q.M. Khaliq, High-order time stepping Fourier spectral method for multi-dimensional space-fractional reaction–diffusion equations, Comput. Math. Appl. 77 (2019), pp. 615–630.
  • G. Beylkin, J.M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), pp. 362–387.
  • H.P. Bhatt and A. Chowdhury, A high-order implicit–explicit Runge–Kutta type scheme for the numerical solution of the Kuramoto–Sivashinsky equation, Int. J. Comput. Math. 98 (2021), pp. 1254–1273.
  • H.P. Bhatt and A.Q.M. Khaliq, Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations, Appl. Math. Comput. 228 (2014), pp. 271–291.
  • H.P. Bhatt, A.Q.M. Khaliq, and K.M. Furati, Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions, Numer. Algorithms 83 (2019), pp. 1–25.
  • A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equation, BIT Numer. Math. 54 (4) (2014), pp. 937–954.
  • K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput. 34 (2021), pp. A2145–A2172.
  • M. Caliari and A. Ostermann, Implementation of exponential Rosenbrock type integrals, App. Numer. Math. 59 (2009), pp. 568–581.
  • P. Carr, H. Geman, D.B. Madan, and M. Yor, Stochastic volatility for Lévy processes, Math. Finance 13 (2007), pp. 345–382.
  • S. Chen, F. Liu, I. Turner, and V. Anh, An implicit numerical method for the two dimensional fractional percolation equation, Appl. Math. Comput. 219 (2013), pp. 4322–4331.
  • S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), pp. 430–455.
  • N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions, SIAM J. Numer. Anal. 56 (2018), pp. 1243–1272.
  • Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numer. Math. 45 (2005), pp. 307–328.
  • S. Duo and Y. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl. 77 (2016), pp. 2257–2271.
  • S. Duo and Y. Zhang, Numerical approximations for the tempered fractional Laplacian: Error analysis and applications, J. Sci. Comput. 81 (2019), pp. 569–593.
  • B. Fornberg and T.A. Driscoll, A fast spectral for nonlinear wave equations with linear dispersion, J. Comput. Phys. 155 (1999), pp. 456–467, 937–954.
  • D. He, K. Pan, and X. Yue, A fourth-order maximum principle preserving operator splitting scheme for three-dimensional fractional Allen–Cahn equations, Appl. Numer. Math. 151 (2020), pp. 44–63.
  • M. Hochburck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34 (1997), pp. 1911–1925.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation I, Fract. Calc. Appl. Anal. 8 (2005), pp. 323–341.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), pp. 333–349.
  • L. Ju, J. Zhang, L. Zhu, and Q. Du, Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput. 62 (2015), pp. 431–455.
  • A.K. Kassam and L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput.26(4) (2005), pp. 1214–1233.
  • A.Q.M. Khaliq, J.M. Vaquero, B.A. Wade, and M. Yousuf, Smoothing schemes for reaction-diffusion systems with nonsmooth data, J. Comput. Appl. Math. 223 (2009), pp. 374–386.
  • S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005), pp. 72–88.
  • N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), pp. 298–305.
  • A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth, and G.E. Karniadakis, What is the fractional Laplacian? Preprint (2018). Available at arXiv:1801.09767.
  • F. Liu, I. Turner, V. Anh, Q. Yang, and K. Burrage, A numerical method for the fractional Fitzhugh–Nagumo monodomain model, ANZIAM J. 54 (2013), pp. C608–C629.
  • C.V. Loan, Computational Frameworks for the Fast Fourier Transform, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1992.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77.
  • S.P. Norsett and A. Wolfbrandt, Attainable order of rational approximations to the exponential function with only real poles, BIT 17 (1977), pp. 200–208.
  • K.M. Owolabi and A. Atangana, Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions, Adv. Differ. Equ. 223 (2017), pp. 1–24.
  • E. Pindza and K.M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), pp. 112–128.
  • S. Shen, F. Liu, V. Anh, and I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math. 73 (2008), pp. 850–872.
  • S. Shen, F. Liu, and V. Anh, Numerical approximations and solution techniques for the spacetime Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms 56 (2011), pp. 383–403.
  • S. Shen, F. Liu, V. Anh, I. Turner, and J. Chen, A novel numerical approximation for the space fractional advection-dispersion equation, IMA J. Appl. Math. 79 (2014), pp. 431–444.
  • L.W. Somathilake and K. Burrage, A space-fractional-reaction-diffusion model for pattern formation in coral reefs, Cogent Math. Stat. 5(1) (2018), pp. 1–21.
  • F. Song, C. Xu, and G.E. Karniadakis, A fractional phase-field model for two-phase flows with tunable sharpness: Algorithms and simulations, Comput. Methods Appl. Mech. Eng. 404 (2016), pp. 305–376.
  • Y.A. Suhov, A spectral method for the time evolution in parabolic problems, J. Sci. Comput. 29 (2006), pp. 201–217.
  • H. Tal-Ezer, On restart and error estimation for Krylov approximation of w=f(A)v, SIAM J. Sci. Comput. 29 (2007), pp. 2426–2441.
  • Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), pp. 200–218.
  • Q. Yu, F. Liu, I. Turner, and K. Burrage, Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D, Cent. Eur. J. Phys. 11 (2013), pp. 646–665.
  • H. Zhang and F. Liu, Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term, J. Appl. Math. Inform. 26 (2008), pp. 1–14.
  • L. Zhang and H.-W. Sun, Numerical solution for multi-dimensional Riesz fractional nonlinear reaction diffusion equation by exponential Runge Kutta method, J. Appl. Math. Comput. 62(1–2) (2020), pp. 449–472.
  • H. Zhang, X. Jiang, F. Zeng, and G.E. Karniadakis, A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations, J. Comput. Phys. 405 (2020), p. 109141.
  • X. Zhao, Z. Sun, and Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space-fractional Schrödinger equation, SIAM J. Sci. Comput. 36 (2014), pp. A2865–A2886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.