138
Views
1
CrossRef citations to date
0
Altmetric
Research Article

How do Monte Carlo estimates affect stochastic geometric numerical integration?

&
Pages 192-208 | Received 06 Dec 2021, Accepted 11 Jul 2022, Published online: 29 Aug 2022

References

  • S. Anmarkrud and A. Kværnø, Order conditions for stochastic Runge–Kutta methods preserving quadratic invariants of stratonovich SDEs, J. Comput. Appl. Math. 316 (2017), pp. 40–46.
  • R. Anton, D. Cohen, S. Larsson and X. Wang, Full discretization of semilinear stochastic wave equations driven by multiplicative noise, SIAM J. Numer. Anal. 54(2) (2016), pp. 1093–1119.
  • R. Anton and D. Cohen, Exponential integrators for stochastic Schrödinger equations driven by it oˆ noise, J. Comput. Math. 36(2) (2018), pp. 276–309.
  • A. Bazzani, Hamiltonian systems and Stochastic processes, Lecture Notes of the University of Bologna, 2018.
  • L. Brugnano, G. Gurioli and F. Iavernaro, Analysis of energy and quadratic invariant preserving (EQUIP) methods, J. Comput. Appl. Math. 335 (2018), pp. 51–73.
  • E. Buckwar and R. D'Ambrosio, Exponential mean-square stability properties of stochastic multistep methods, Adv. Comput. Math. 47 (2021), pp. 78.
  • K. Burrage and P.M. Burrage, Low rank Runge–Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise, J. Comput. Appl. Math. 236(16) (2012), pp. 3920–3930.
  • P.M. Burrage and K. Burrage, Structure-preserving Runge–Kutta methods for stochastic Hamiltonian equations with additive noise, Numer. Algorithms 65(3) (2014), pp. 519–532.
  • E. Celledoni, B. Owren and Y. Sun, The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method, Math. Comput 83(288) (2014), pp. 1689–1700.
  • C. Chen, D. Cohen and J. Hong, Conservative methods for stochastic differential equations with a conserved quantity, Int. J. Numer. Anal. Model. 13(3) (2016), pp. 435–456.
  • C. Chen, D. Cohen, R. D'Ambrosio and A. Lang, Drift-preserving numerical integrators for stochastic Hamiltonian systems, Adv. Comput. Math. 46(2) (2020), pp. 27.
  • V. Citro, R. D'Ambrosio and S. Di Giovacchino, A-stability preserving perturbation of Runge–Kutta methods for stochastic differential equations, Appl. Math. Lett. 102 (2020), pp. 106098.
  • V. Citro and R. D'Ambrosio, Long-term analysis of stochastic θ-methods for damped stochastic oscillators, Appl. Numer Math. 150 (2020), pp. 18–26.
  • D. Cohen, On the numerical discretisation of stochastic oscillators, Math. Comput. Simul. 82(8) (2012), pp. 1478–1495.
  • D. Cohen, S. Larsson and M. Sigg, A trigonometric method for the linear stochastic wave equation, SIAM J. Numer. Anal. 51(1) (2013), pp. 204–222.
  • D. Cohen, J. Cui, J. Hong and L. Sun, Exponential integrators for stochastic Maxwell's equations driven by It oˆ noise, J. Comput. Phys. 410 (2020), pp. 109382.
  • D. Cohen and G. Dujardin, Energy-preserving integrators for stochastic Poisson systems, Commun. Math. Sci. 12(8) (2014), pp. 1523–1539.
  • D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT 51(1) (2011), pp. 91–101.
  • D. Cohen and G. Vilmart, Drift-preserving numerical integrators for stochastic Poisson systems, Int. J. Comput. Math. 99 (2021).
  • D. Conte, R. D'Ambrosio and B. Paternoster, On the stability of theta-methods for stochastic Volterra integral equations, Discr. Cont. Dyn. Sys. -- B 23(7) (2018), pp. 2695–2708.
  • R. D'Ambrosio, M. Moccaldi and B. Paternoster, Numerical preservation of long-term dynamics by stochastic two-step methods, Discr. Cont. Dyn. Sys. -- B 23(7) (2018), pp. 2763–2773.
  • R. D'Ambrosio and S. Di Giovacchino, Mean-square contractivity of stochastic θ-methods, Commun. Nonlinear Sci. Numer. Simul. 96 (2021), pp. 105671.
  • R. D'Ambrosio and S. Di Giovacchino, Nonlinear stability issues for stochastic Runge–Kutta methods, Commun. Nonlinear Sci. Numer. Simul. 94 (2021), pp. 105549.
  • R. D'Ambrosio and S. Di Giovacchino, Long-term analysis of stochastic Hamiltonian systems under time discretizations, submitted.
  • R. D'Ambrosio and C. Scalone, On the numerical structure preservation of nonlinear damped stochastic oscillators, Numer. Algorithms 86 (2021), pp. 933–952.
  • R. D'Ambrosio and C. Scalone, Two-step Runge–Kutta methods for stochastic differential equations, Appl. Math. Comput. 403 (2021), pp. 125930.
  • H. de la Cruz, J.C. Jimenez and J.P. Zubelli, Locally linearized methods for the simulation of stochastic oscillators driven by random forces, BIT 57(1) (2017), pp. 123–151.
  • M.B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56(3) (2008), pp. 607–617.
  • O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6(5) (1996), pp. 449–467.
  • E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Second Edition, Springer-Verlag, Berlin, Heidelberg, 2006.
  • M. Han, Q. Ma and X. Ding, High-order stochastic symplectic partitioned Runge–Kutta methods for stochastic Hamiltonian systems with additive noise, Appl. Math. Comput. 346 (2019), pp. 575–593.
  • D.J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal. 38(3) (2000), pp. 753–769.
  • D.J. Higham, X. Mao and A.M. Stuart, Exponential mean-square stability of numerical solutions to stochastic differential equations, LMS J. Comput. Math. 6 (2003), pp. 297–313.
  • D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43 (2011), pp. 525–546.
  • D.J. Higham and P.E. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math. 10(1) (2005), pp. 101–119.
  • D.J. Higham and P.E. Kloeden, An Introduction to the Numerical Simulation of Stochastic Differential Equations, SIAM, US, 2021.
  • J. Hong, R. Scherer and L. Wang, Midpoint rule for a linear stochastic oscillator with additive noise, Neural Parallel Sci. Comput. 14(1) (2006), pp. 1–12.
  • P.E. Kloeden and E. Platen, The Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.
  • Y. Komori, Y. SaIt oˆ and T. Mitsui, Some issues in discrete approximate solution for stochastic differential equations, Comput. Math. Appl. 28(10–12) (1994), pp. 269–278.
  • A. Lang, A note on the importance of weak convergence rates for SPDE approximations in multilevel Monte Carlo schemes. in Proceedings of MCQMC 2014, Leuven, Belgium, 2015.
  • G.N. Milstein and M.V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004.
  • Y. Miyatake, An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems, BIT 54(3) (2014), pp. 777–799.
  • Y. Miyatake and J.C. Butcher, A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems, SIAM J. Numer. Anal. 54(3) (2016), pp. 1993–2013.
  • A. Rössler, Runge–Kutta methods for Itô stochastic differential equations with scalar noise, BIT Numer. Math. 46(1) (2006), pp. 97–110.
  • Y. SaIt oˆ and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal. 33(6) (1996), pp. 2254–2267.
  • H. Schurz, Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise, Discrete Contin. Dyn. Syst. Ser. S 1(2) (2008), pp. 353–363.
  • M.J. Senosiain and A. Tocino, A review on numerical schemes for solving a linear stochastic oscillator, BIT 55(2) (2015), pp. 515–529.
  • A.H. Strømmen Melbø and D.J. Higham, Numerical simulation of a linear stochastic oscillator with additive noise, Appl. Numer. Math. 51(1) (2004), pp. 89–99.
  • X. Wu, B. Wang and W. Shi, Efficient energy-preserving integrators for oscillatory Hamiltonian systems, J. Comput. Phys. 235 (2013), pp. 587–605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.