187
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An explicit high-order compact finite difference scheme for the three-dimensional acoustic wave equation with variable speed of sound

&
Pages 321-341 | Received 20 Jul 2021, Accepted 19 Jul 2022, Published online: 21 Sep 2022

References

  • R.M. Alford, K.R. Kelly, and D.M. Boore, Accuracy of finite-difference modeling of acoustic wave equations, Geophysics 39 (1974), pp. 834–842.
  • G. Cohen, P. Joly, J.E. Roberts, and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal. 38 (2001), pp. 2047–2078.
  • M. Dablain, The application of high-order differencing to the scalar wave equation, Geophysics 51(1) (1986), pp. 54–66.
  • S. Das, W. Liao, and A. Gupta, An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation, J. Comput. Appl. Math. 258 (2014), pp. 151–167.
  • D.W. Deng, Unified compact ADI methods for solving nonlinear viscous and nonviscous wave equations, Chin. J. Phys. 56 (2018), pp. 2897–2915.
  • D.W. Deng, Numerical simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method, Numer. Funct. Anal. Optim. 40(9) (2019), pp. 1053–1079.
  • D. Deng and D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput. 329 (2018), pp. 188–209.
  • J. Douglas Jr, On the numerical integration of by implicit methods, J. Soc. Ind. Appl. Math. 3 (1955), pp. 42–65.
  • P.J. Drazin and R.S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1989.
  • B. Finkelstein and R. Kastner, Finite difference time domain dispersion reduction schemes, J. Comput. Phys. 221 (2007), pp. 422–438.
  • M. Ilati and M. Dehghan, The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations, Eng. Anal. Bound. Elem. 52 (2015), pp. 99–109.
  • D.S. Jones, Acoustic and Electromagnetic Waves, Oxford University Press, New York, 1986.
  • S. Karaa, Unconditionally stable ADI scheme of higher order for linear hyperbolic equations, Int. J. Comput. Math. 87 (2010), pp. 3030–3038.
  • K.R. Khusnutdinova and D.E. Pelinovsky, On the exchange of energy in coupled Klein–Gordon equations, Wave Mot.38 (2003), pp. 1–10.
  • S. Kim and H. Lim, High-order schemes for acoustic waveform simulation, Appl. Numer. Math. 57 (2007), pp. 402–414.
  • D.D. Kosloff and E. Baysal, Forward modeling by a Fourier method, Geophysics 47 (1982), pp. 1402–1412.
  • S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992), pp. 16–42.
  • K. Li and W. Liao, An efficient and high accuracy finite-difference scheme for the acoustic wave equation in 3D heterogeneous media, J. Comput. Sci. 40 (2020), Article ID 101063.
  • K. Li, W. Liao, and Y. Lin, A compact high order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient, J. Comput. Appl. Math. 361 (2019), pp. 113–129.
  • H.L. Liao and Z.Z. Sun, Maximum norm error estimates of efficient difference schemes for second-order wave equations, J. Comput. Appl. Math. 235 (2011), pp. 2217–2233.
  • H.L. Liao and Z.Z. Sun, A two-level compact ADI method for solving second-order wave equations, Int. J. Comput. Math. 90 (2013), pp. 1471–1488.
  • W. Liao, On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation, J. Comput. Appl. Math. 270 (2014), pp. 571–583.
  • W. Liao, P. Yong, H. Dastour, and J. Huang, Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media, Appl. Math. Comput. 321 (2018), pp. 385–400.
  • Y. Liu and K.S. Mrinal, A new time-space domain high-order finite-difference method for the acoustic wave equation, J. Comput. Phys. 228 (2009), pp. 8779–8806.
  • D.W. Peaceman and H.H. Rachford Jr, The numerical of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math. 3 (1955), pp. 28–41.
  • R.D. Richtmyer and K.M. Morton, Difference Methods for Initial Value Problems, 2nd ed., John Wiley & Sons, New York, 1967.
  • A.A. Samarskii, Local one dimensional difference schemes for multi-dimensional hyperbolic equations in an arbitrary region, USSR Comput. Math. Math. Phys. 4 (1964), pp. 21–35.
  • L.H. Thomas, Elliptic Problems in Linear Difference Equations over a Network, Watson Scientific Computing Laboratory, Columbia University, New York, 1949.
  • Z. Wang, J. Li, B. Wang, Y. Xu, and X. Chen, A new central compact finite difference scheme with high spectral resolution for acoustic wave equation, J. Comput. Phys. 366 (2018), pp. 191–206.
  • D.H. Yang, J.M. Peng, M. Lu, and T. Terlaky, Optimal nearlyanalytic discrete approximation to the scalar wave equation, Bull. Seismol. Soc. Am. 96 (2006), pp. 1114–1130.
  • D.H. Yang, J.W. Teng, Z.J. Zhang, and E. Liu, A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media, Bull. Seismol. Soc. Am. 93 (2003), pp. 882–890.
  • D.H. Yang, P. Tong, and X.Y. Deng, A central difference method with low numerical dispersion for solving the scalar wave equation, Geophys. Prospect. 60 (2012), pp. 885–905.
  • S. Yomosa, Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev. A 27 (1983), pp. 2120–2125.
  • W. Zhang, A new family of fourth-order locally one-dimensional schemes for the 3D elastic wave equation, J. Comput. Appl. Math. 348 (2019), pp. 246–260.
  • W. Zhang and J. Jiang, A new family of fourth-order locally one-dimensional schemes for the three-dimensional wave equation, J. Comput. Appl. Math. 311 (2017), pp. 130–147.
  • W. Zhang, L. Tong, and E.T. Chung, A new high accuracy locally one-dimensional scheme for the wave equation, J. Comput. Appl. Math. 236 (2011), pp. 1343–1353.
  • W. Zhang, L. Tong, and E.T. Chung, A hybrid finite difference/control volume method for the three dimensional poroelastic wave equation in the spherical coordinate system, J. Comput. Appl. Math. 255 (2014), pp. 812–824.
  • D.W. Zingg, Comparison of high-accuracy finite-difference methods for linear wave propagation, SIAM J. Sci. Comput. 22(2) (2000), pp. 476–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.