902
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical strategies for recursive least squares solutions to the matrix equation AX = B

&
Pages 497-510 | Received 31 Jan 2022, Accepted 02 Sep 2022, Published online: 21 Oct 2022

References

  • E. Anderson, Z. Bai, and J. Dongarra, Generalized QR factorization and its applications, Linear Algebra Appl. 162–164(0) (1992), pp. 243–271.
  • R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX + XB = C [F4], Commun. ACM 15(9) (1972), pp. 820–826.
  • M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl. 415(1) (2006), pp. 20–30.
  • J.R. Bunch and C.P. Nielsen, Updating the singular value decomposition, Numer. Math. 31(2) (1978), pp. 111–129.
  • J.R. Cardoso and K. Ziẹtak, On a sub-Stiefel procrustes problem arising in computer vision, Numer. Linear Algebra Appl. 22(3) (2015), pp. 523–547.
  • D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification, in 2013 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 3025–3032.
  • R. Christensen, L.M. Pearson, and W. Johnson, Case-deletion diagnostics for mixed models, Technometrics 34(1) (1992), pp. 38–45.
  • K. Chu, Singular value and generalized singular value decompositions and the solution of linear matrix equations, Linear Algebra Appl. 88 (1987), pp. 83–98.
  • R.D. Cook, Influential observations in linear regression, J. Am. Stat. Assoc. 74(365) (1979), pp. 169–174.
  • C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1(3) (1936), pp. 211–218.
  • L. Eldén and H. Park, A procrustes problem on the Stiefel manifold, Numer. Math. 82(4) (1999), pp. 599–619.
  • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval, IEEE Trans. Pattern Anal. Mac. Intell. 35(12) (2013 Dec), pp. 2916–2929.
  • J.C. Gower, Generalized procrustes analysis, Psychometrika 40(1) (1975), pp. 33–51.
  • J.C. Gower, Procrustes methods, Interdiscip. Rev. Comput. Stat. 2(4) (2010), pp. 503–508.
  • B.F. Green, The orthogonal approximation of an oblique structure in factor analysis, Psychometrika 17(4) (1952), pp. 429–440.
  • M. Gu and S.C. Eisenstat, Downdating the singular value decomposition, SIAM J. Matrix Anal. Appl. 16(3) (1995), pp. 793–810.
  • S. Hadjiantoni and E.J. Kontoghiorghes, Estimating large-scale general linear and seemingly unrelated regressions models after deleting observations, Stat. Comput. 27(2) (2017), pp. 349–361.
  • S. Hadjiantoni and E.J. Kontoghiorghes, A recursive three-stage least squares method for large-scale systems of simultaneous equations, Linear Algebra Appl. 536 (2018), pp. 210–227.
  • N.J. Higham, The symmetric procrustes problem, BIT Numer. Math. 28(1) (1988), pp. 133–143.
  • N.J. Higham and N. Strabić, Bounds for the distance to the nearest correlation matrix, SIAM J. Matrix Anal. Appl. 37(3) (2016), pp. 1088–1102.
  • D. Hua, On the symmetric solutions of linear matrix equations, Linear Algebra Appl. 131 (1990), pp. 1–7.
  • A.-P. Liao and Y. Lei, Least-squares solution with the minimum-norm for the matrix equation (AXB, GXH) = (C, D), Comput. Math. Appl. 50(3) (2005), pp. 539–549.
  • X. Liu, Hermitian and non-negative definite reflexive and anti-reflexive solutions to AX=B, Int. J. Comput. Math. 95(8) (2018), pp. 1666–1671.
  • Y.H. Liu, Ranks of least squares solutions of the matrix equation AXB=C, Comput. Math. Appl. 55(6) (2008), pp. 1270–1278.
  • J.R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd ed., Wiley, Chichester, UK, 2007.
  • F.L. Markley, Attitude determination using vector observations and the singular value decomposition, J. Astronaut. Sci. 36(3) (1988), pp. 245–258.
  • C. Meng, X. Hu, and L. Zhang, The skew-symmetric orthogonal solutions of the matrix equation AX=B, Linear Algebra Appl. 402 (2005), pp. 303–318.
  • C.I. Mosier, Determining a simple structure when loadings for certain tests are known, Psychometrika 4(2) (1939), pp. 149–162.
  • X.Y. Peng, X.Y. Hu, and L. Zhang, The reflexive and anti-reflexive solutions of the matrix equation AHXB=C,J. Comput. Appl. Math. 200(2) (2007), pp. 749–760.
  • Y. Peng, W. Kong, and B. Yang, Orthogonal extreme learning machine for image classification, Neurocomputing 266 (2017), pp. 458–464.
  • Y. Qiu and A. Wang, Solving balanced procrustes problem with some constraints by eigenvalue decomposition,J. Comput. Appl. Math. 233(11) (2010), pp. 2916–2924.
  • M.B. Rubin and D. Solav, Unphysical properties of the rotation tensor estimated by least squares optimization with specific application to biomechanics, Int. J. Eng. Sci. 103 (2016), pp. 11–18.
  • P.H. Schönemann, A generalized solution of the orthogonal procrustes problem, Psychometrika 31(1) (1966),pp. 1–10.
  • V. Simoncini, Computational methods for linear matrix equations, SIAM Rev. 58(3) (2016), pp. 377–441.
  • J. Snyders and M. Zakai, On nonnegative solutions of the equation AD+DA′=−C, SIAM J. Appl. Math. 18(3) (1970), pp. 704–714.
  • Y. Sun and L. Vandenberghe, Decomposition methods for sparse matrix nearness problems, SIAM J. Matrix Anal. Appl. 36(4) (2015), pp. 1691–1717.
  • Y. Tai, J. Yang, Y. Zhang, L. Luo, J. Qian, and Y. Chen, Face recognition with pose variations and misalignment via orthogonal procrustes regression, IEEE Trans. Image Process. 25(6) (2016), pp. 2673–2683.
  • Y. Tian and Y. Takane, On consistency, natural restrictions and estimability under classical and extended growth curve models, J. Stat. Plan. Inference 139(7) (2009), pp. 2445–2458.
  • J.A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for low-rank matrix approximation, SIAM J. Matrix Anal. Appl. 38(4) (2017), pp. 1454–1485.
  • W.J. Vetter, Vector structures and solutions of linear matrix equations, Linear Algebra Appl. 10(2) (1975),pp. 181–188.
  • G. Wahba, A least squares estimate of satellite attitude, SIAM Rev. 7(3) (1965), pp. 409–409.
  • P.C. Young, Recursive Estimation and Time-Series Analysis, 2nd ed., Springer-Verlag, Berlin Heidelberg, 2011.
  • H. Zhao, Z. Wang, and F. Nie, Orthogonal least squares regression for feature extraction, Neurocomputing 216 (2016), pp. 200–207.