158
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel method with convergence analysis based on the Jacobi wavelets for solving a system of two-dimensional Volterra integral equations

&
Pages 641-665 | Received 05 Jul 2022, Accepted 05 Oct 2022, Published online: 14 Nov 2022

References

  • A. Arikoglu and I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method. Comput. Math. Appl. 56 (2008), pp. 2411–2417. doi:10.1016/j.camwa.2008.05.017.
  • E. Babolian, J. Biazar, and A.R. Vahidi, On the decomposition method for system of linear equations and system of linear Volterra integral equations. Appl. Math. Comput. 147(1) (2004), pp. 19–27. doi:10.1016/S0096-3003(02)00644-6.
  • C. Baker, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, 1978.
  • A.H. Bhrawy and M.A. Zaky, Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn. 89 (2017), pp. 1415–1432. doi:10.1007/s11071-017-3525-y.
  • J. Biazar, E. Babolian, and R. Islam, Solution of a system of Volterra integral equations of the first kind by Adomian method. Appl. Math. Comput. 139 (2003), pp. 249–258. doi:10.1016/S0096-3003(02)00173-X.
  • M.V. Bulatov and P.M. Lima, Two-dimensional integral–algebraic systems: Analysis and computational methods. J. Comput. Appl. Math. 236(2) (2011), pp. 132–140. doi:10.1016/j.cam.2011.06.001.
  • F. Bulut, Ö Oruç, and A. Esen, Numerical solutions of fractional system of partial differential equations by Haar wavelets. CMES-Comput. Model. Eng. Sci. 108 (2015), pp. 263–284. doi:10.3970/cmes.2015.108.263.
  • F. Bulut, Ö Oruç, and A. Esen, Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation. Math. Comput. Simul. 197 (2022), pp. 277–290. doi:10.1016/j.matcom.2022.02.006.
  • İ Çelik, Generalization of Gegenbauer wavelet collocation method to the generalized Kuramoto–Sivashinsky equation. Int. J. Appl. Comput. Math. 4 (2018), pp. 111. doi:10.1007/s40819-018-0546-2.
  • C.K. Chui, An Introduction to Wavelets (Vol. 1), Academic Press, Texas, 1992.
  • G. Esra Köse, Ö Oruç, and A. Esen, An application of Chebyshev wavelet method for the nonlinear time fractional Schrödinger equation. Math. Methods. Appl. Sci. 45 (2022), pp. 6635–6649. doi:10.1007/s40819-018-0546-2doi:10.1002/mma.8196.
  • A. Golbabai, M. Mammadov, and S. Seifollahi, Solving a system of nonlinear integral equations by an RBF network. Comput. Math. Appl. 57 (2009), pp. 1651–1658. doi:10.1016/j.camwa.2009.03.038.
  • T.I. Hasan, S. Salleh, and N.A. Sulaiman, Solving a system of Volterra-Fredholm integral equations of the second kind via fixed point method. In AIP Conf. Proc. 1691(1) (2015), pp. 040006. doi:10.1063/1.4937056.
  • A. Jafarian, S.A.M. Nia, A.K. Golmankhaneh, and D. Baleanu, Numerical solution of linear integral equations system using the Bernstein collocation method. Adv. Differ. Equ. 2013 (2013), pp. 1–15. doi:10.1186/1687-1847-2013-123.
  • M. Javidi, Modified homotopy perturbation method for solving system of linear Fredholm integral equations. Math. Comput. Model. 50 (2009), pp. 159–165. doi:10.1016/j.mcm.2009.02.003.
  • A. Jerri, Introduction to Integral Equations with Applications, John Wiley & Sons, New York, 1999.
  • A. Karimi, K. Maleknejad, and R. Ezzati, Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence. Appl. Numer. Math. 156 (2020), pp. 228–241. doi:10.1016/j.apnum.2020.05.003.
  • K. Maleknejad and M.T. Kajani, Solving linear integro-differential equation system by Galerkin methods with hybrid functions. Appl. Math. Comput. 159 (2004), pp. 603–612. doi:10.1016/j.amc.2003.10.046.
  • K. Maleknejad and F. Mirzaee, Numerical solution of linear Fredholm integral equations system by rationalized Haar functions method. Int. J. Comput. Math. 80(11) (2003), pp. 1397–1405. doi:10.1080/0020716031000148214.
  • K. Maleknejad, H. Safdari, and M. Nouri, Numerical solution of an integral equations system of the first kind by using an operational matrix with block pulse functions. Int. J. Syst. Sci. 42 (2011), pp. 195–199. doi:10.1080/00207720903499824.
  • S. Narumi, Some formulas in the theory of interpolation of many independent variables. Tohoku Math. J., First Series 18 (1920), pp. 309–321.
  • Ö Oruç, A computational method based on Hermite wavelets for two-dimensional Sobolev and regularized long wave equations in fluids. Numer. Methods. Partial. Differ. Equ. 34 (2018), pp. 1693–1715. doi:10.1002/num.22232.
  • Ö Oruç, A numerical procedure based on Hermite wavelets for two-dimensional hyperbolic telegraph equation. Eng. Comput. 34 (2018), pp. 741–755. doi:10.1007/s00366-017-0570-6.
  • Ö Oruç, An efficient wavelet collocation method for nonlinear two-space dimensional Fisher–Kolmogorov–Petrovsky–Piscounov equation and two-space dimensional extended Fisher–Kolmogorov equation. Eng. Comput. 36 (2020), pp. 839–856. doi:10.1007/s00366-019-00734-z.
  • Ö Oruç, F. Bulut, and A. Esen, Numerical solution of the KdV equation by Haar wavelet method. Pramana 87 (2016), pp. 1–11. doi:10.1007/s12043-016-1286-7.
  • P. Rahimkhani and Y. Ordokhani, Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. Optimal Control Appl. Methods 39(6) (2018), pp. 1916–1934. doi:10.1002/oca.2456.
  • P.K. Sahu, and S. Saha Ray, Comparative experiment on the numerical solutions of Hammerstein integral equation arising from chemical phenomenon. J. Comput. Appl. Math. 291 (2016a), pp. 402–409. doi:10.1016/j.cam.2015.03.004.
  • P.K. Sahu and S. Saha Ray, Legendre spectral collocation method for the solution of the model describing biological species living together. J. Comput. Appl. Math. 296 (2016b), pp. 47–55. doi:10.1016/j.cam.2015.09.011.
  • A. Shidfar and A. Molabahrami, Solving a system of integral equations by an analytic method. Math. Comput. Model. 54 (2011), pp. 828–835. doi:10.1016/j.mcm.2011.03.031.
  • H.H. Sorkun and S. Yalçinbaş, Approximate solutions of linear Volterra integral equation systems with variable coefficients. Appl. Math. Model. 34 (2010), pp. 3451–3464. doi:10.1016/j.apm.2010.02.034.
  • W. Van Assche and E. Coussement, Some classical multiple orthogonal polynomials. J. Comput. Appl. Math. 127 (2001), pp. 317–347. doi:10.1016/S0377-0427(00)00503-3.
  • A.M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, Higher Education Press, Beijing, 2011.
  • E. Yusufoğlu, An efficient algorithm for solving integro-differential equations system. Appl. Math. Comput. 192 (2007), pp. 51–55. doi:10.1016/j.amc.2007.02.134.
  • M.A. Zaky, I.G. Ameen, and M.A. Abdelkawy, A new operational matrix based on Jacobi wavelets for a class of variable-order fractional differential equations. Proc. Romanian Acad. Ser. A 18 (2017), pp. 315–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.