143
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Numerical method for solving the fractional evolutionary model of bi-flux diffusion processes

, &
Pages 880-900 | Received 11 Oct 2022, Accepted 25 Dec 2022, Published online: 06 Jan 2023

References

  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015), pp. 424–438.
  • D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing Company, 2012.
  • E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker–Planck equation, Phys. Rev. E 61 (2000), pp. 132–138.
  • L. Bevilacqua, A.C.N.R. Galeão, J.G. Simas, and A.P.R. Doce, A new theory for anomalous diffusion with a bimodal flux distribution, J. Braz. Soc. Mech. Sci. Eng. 35(4) (2013), pp. 431–440.
  • L. Bevilacqua, M.S. Jiang, A.J. Silva Neto, and A.C.N.R. Galeão, An evolutionary model of bi-flux diffusion processes, J. Braz. Soc. Mech. Sci. Eng. 38(5) (2016), pp. 1421–1432.
  • S. Brandani, M. Jama, and D. Ruthven, Diffusion, self-diffusion and counter-diffusion of benzene and p-xylene in silicalite, Micropor. Mesopor. Mat. 35 (2000), pp. 283–300.
  • A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997.
  • D.K. Cen and Z.B. Wang, Time two-grid technique combined with temporal second order difference method for two-dimensional semilinear fractional sub-diffusion equations, Appl. Math. Lett. 129 (2022), pp. 107919.
  • E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp. 75 (2006), pp. 673–696.
  • V.J. Ervin, N. Heuer, and J.P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45 (2007), pp. 572–591.
  • T.L. Hou, T. Tang, and J. Yang, Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations, J. Sci. Comput. 72(3) (2017), pp. 1214–1231.
  • J.F. Huang, J.N. Zhang, S. Arshad, and Y.F. Tang, A superlinear convergence scheme for the multi-term and distribution-order fractional wave equation with initial singularity, Numer. Meth. Part. Diff. Equ. 37 (2021), pp. 2833–2848.
  • C.-C. Ji and W.Z. Dai, Numerical algorithm with fourth-order spatial accuracy for solving the time-fractional dual-phase-lagging nanoscale heat conduction equation, Numer. Math. Theor. Meth. Appl. 1(2022) (Accepted).
  • C.-C. Ji, W.Z. Dai, and Z.-Z. Sun, Numerical schemes for solving the time-fractional dual-phase-lagging heat conduction model in a double-layered nanoscale thin film, J. Sci. Comput. 81 (2019), pp. 1767–1800.
  • C.-C. Ji and Z.-Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation, J. Sci. Comput. 64 (2015), pp. 959–985.
  • C.-C. Ji and Z.-Z. Sun, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation, Appl. Math. Comput. 269 (2015), pp. 775–791.
  • M.S. Jiang, L. Bevilacqua, A.J. Silva Neto, A.C.N.R. Galeão, and J. Zhu, Bi-flux theory applied to the dispersion of particles in anisotropic substratum, Appl. Math. Model. 64 (2018), pp. 121–134.
  • M.S. Jiang, L. Bevilacqua, J. Zhu, and X.J. Yu, Nonlinear Galerkin finite element methods for fourth-order bi-flux diffusion model with nonlinear reaction term, Comp. Appl. Math. 39 (2020), pp. 143.
  • M.S. Jiang, Z.Y. Zhang, and J. Zhao, Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation, J. Comput. Phys. 456 (2022), pp. 110954.
  • M.S. Jiang and J. Zhao, Linear relaxation schemes for the Allen–Cahn-type and Cahn–Hilliard-type phase field models, Appl. Math. Lett. 137 (2023), pp. 108477.
  • B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou, Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal. 52 (2014), pp. 2272–2294.
  • B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal. 36 (2016), pp. 197–221.
  • B. Jin, B. Li, and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput. 39 (2017), pp. A3129–A3152.
  • B.R. Ju and W.Z. Qu, Three-dimensional application of the meshless generalized finite difference method for solving the extended Fisher–Kolmogorov equation, Appl. Math. Lett. 136 (2023), pp. 108458.
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • R. Klages, G. Radons, and I.M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley-VCHl, 2008.
  • X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), pp. 2108–2131.
  • H.-L. Liao, D.F. Li, and J.W. Zhang, Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal. 56 (2018), pp. 1112–1133.
  • Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552.
  • Y. Liu, Y.W. Du, H. Li, S. He, and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem, Comput. Math. Appl. 70 (2015), pp. 573–591.
  • K.E. Liu and Z.J. Ji, Dynamic event-triggered consensus of general linear multi-agent systems with adaptive strategy, IEEE Tran. Cir. Sys. II: Express Birefs 69(8) (2022), pp. 3440–3444.
  • H. Liu and K.E Thompson, Numerical modeling of reactive polymer flow in porous media, Comput. Chem. 26 (2002), pp. 1595–1610.
  • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), pp. 704–719.
  • W. McLean, Regularity of solutions to a time-fractional diffusion equation, ANZIAM J. 52 (2010), pp. 123–138.
  • A. Mellet, S. Mischler, and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. An. 199(2) (2011), pp. 493–525.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • Y. Povstenko, Fractional Thermoelasticity, Springer, 2015.
  • Q.S. Qin, L.N. Song, and Q.X. Wang, High-order meshless method based on the generalized finite difference method for 2D and 3D elliptic interface problems, Appl. Math. Lett. 137 (2023), pp. 108479.
  • W.Z. Qu, H.W. Gao, and Y. Gu, Integrating Krylov deferred correction and generalized finite difference methods for dynamic simulations of wave propagation phenomena in long-time intervals, Adv. Appl. Math. Mech. 13(6) (2021), pp. 1398–1417.
  • W.Z. Qu and H. He, A GFDM with supplementary nodes for thin elastic plate bending analysis under dynamic loading, Appl. Math. Lett. 124 (2022), pp. 107664.
  • M. Stynes, E. O'Riordan, and J.L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55 (2017), pp. 1057–1079.
  • Z.Z. Sun, Numerical Methods of Partial Differential Equations, 2nd ed. Science Press, Beijing, 2012. in Chinese.
  • H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear. Sci. Numer. Simulat. 64 (2018), pp. 213–231.
  • T. Tang, H.J. Yu, and T. Zhou, On energy dissipation theory and numerical stability for time-fractional phase-field equations, SIAM J. Sci. Comput. 41(6) (2019), pp. A3757–A3778.
  • V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, 2011.
  • V. Uchaikin and R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystem, World Scientific Publishing Company, 2013.
  • M. Usman, M. Hamid, and M.B. Liu, Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional burger equation in multidimensions, Chaos Soliton. Fract. 144 (2021), pp. 110701.
  • H. Wang and D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM J. Numer. Anal. 51 (2013), pp. 1088–1107.
  • X. Wang, J. Wang, X. Wang, and C.J. Yu, A pseudo-spectral Fourier collocation method for inhomogeneous elliptical inclusions with partial differential equations, Mathematics 10(3) (2022), pp. 296.
  • Y.R. Yuan, C.F. Li, and Q. Yang, Mixed finite element-second order upwind fractional step difference scheme of Darcy–Forchheimer miscible displacement and its numerical analysis, J. Sci. Comput. 86(2) (2021), pp. 24.
  • G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep. 371 (2002), pp. 461–580.
  • M. Zayernouri and G.E. Karniadakis, Discontinuous spectral element methods for time- and space-fractional advection equations, SIAM J. Sci. Comput. 36 (2014), pp. B684–B707.
  • F.H. Zeng, C.P. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013), pp. A2976–A3000.
  • F.H. Zeng, C.P. Li, F. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. 37 (2015), pp. A55–A78.
  • J.N. Zhang, J.F. Huang, T.S. Aleroev, and Y.F Tang, A linearized ADI scheme for two-dimensional time-space fractional nonlinear vibration equations, Int. J. Comput. Math. 98 (2021), pp. 2378–2392.
  • Y.Y. Zheng, C.P. Li, and Z.G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl. 59 (2010), pp. 1718–1726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.