130
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A new high-order compact and conservative numerical scheme for the generalized symmetric regularized long wave equations

&
Pages 968-990 | Received 05 Aug 2022, Accepted 08 Jan 2023, Published online: 25 Jan 2023

References

  • Y. Bai and L. Zhang, A conservative finite difference scheme for symmetric regularized long wave equations, ***Acta Math. Appl. Sin. 30(2) (2007), pp. 248–255.
  • Y. Bai and L. Zhang, A conservative finite difference scheme for generalized symmetric regularized long wave equations, Acta Math. Appl. Sin. 35(3) (2012), pp. 458–470.
  • F.E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math. 17 (1965), pp. 24–49.
  • F. Bulut, O. Oruc, and A. Esen, Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation, Math. Comput. Simul. 197 (2022), pp. 277–290.
  • Y. Chen and B. Li, Stability and instability of solitary waves for generalized symmetric regularized-long-wave equations, Chin. Phys. 13(3) (2004), pp. 302.
  • P.A. Clarkson, New similarity reductions and Painleve analysis for the symmetric regularized long wave and modified Benjamin–Bona–Mahony equations, J. Phys. Math. General. 22(18) (1989), pp. 3821–3848.
  • Y.I. Dimitrienko, S. Li, and Y. Niu, Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme, Math. Comput. Simul. 182 (2021), pp. 661–689.
  • S. Fang, B. Guo, and H. Qiu, The existence of global attractors for a system of multi-dimensional symmetric regularized long wave equations, Commun. Nonlinear Sci. Numer. Simul. 14(1) (2009), pp. 61–68.
  • Z. Fei, V.M. Prez-Garca, and L. Vzquez, Numerical simulation of nonlinear Schrodinger systems: A new conservative scheme, Appl. Math. Comput. 71(2-3) (1995), pp. 165–177.
  • J. Hu, Y. Xu, and B. Hu, A linear difference scheme for dissipative symmetric regularized long wave equations with damping term, Bound. Value Probl. 2010(1) (2010), pp. 1–16.
  • J. Hu, B. Hu, and Y. Xu, C-N difference schemes for dissipative symmetric regularized long wave equations with damping term, Math. Probl. Eng. 2011(1) (2011), pp. 202–214.
  • J. Hu, K. Zheng, and M. Zheng, Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation, Appl. Math. Model. 38(23) (2014), pp. 5573–5581.
  • X. Hu, S. Wang, and L. Zhang, Maximum error estimates for a compact difference scheme of the coupled nonlinear Schrödinger–Boussinesq equations, Numer. Methods Partial Differ. Equ. 35(6) (2019), pp. 1971–1999.
  • B. Ji, L. Zhang, and Q. Sun, A dissipative finite difference Fourier pseudo-spectral method for the symmetric regularized long wave equation with damping mechanism, Appl. Numer. Math. 154 (2020), pp. 90–103.
  • J. Kerdboon, S. Yimnet, B. Wongsaijai, T. Mouktonglang, and K. Poochinapan, Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long-wave equation, Int. J. Comput. Math. 2020 (2020), pp. 1–34.
  • S. Li, Numerical analysis for fourth-order compact conservative difference scheme to solve the 3D Rosenau-RLW equation, Comput. Math. Appl. 72(9) (2016), pp. 2388–2407.
  • S. Li, Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations, Numer. Methods Partial Differ. Equ. 35(1) (2019), pp. 60–83.
  • S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation, SIAM J. Numer. Anal. 32(6) (1995), pp. 1839–1875.
  • S. Li and X. Wu, L∞ error bound of conservative compact difference scheme for the generalized symmetric regularized long-wave (GSRLW) equations, Comput. Appl. Math. 37(3) (2018), pp. 2816–2836.
  • S. Li, D. Xu, J. Zhang, and C. Sun, A new three-level fourth-order compact finite difference scheme for the extended Fisher–Kolmogorov equation, Appl. Numer. Math. 178 (2022), pp. 41–51.
  • X. Ling and W. Zhang, Orbital stability of dn periodic solutions for the generalized symmetric regularized-long-wave equation, Appl. Math. Comput. 405 (2021), pp. 126249.
  • R.C. Mittal and A. Tripathi, Numerical solutions of symmetric regularized long wave equations using collocation of cubic B-splines finite element, Int. J. Comput. Methods Eng. Sci. Mech. 16(2) (2015), pp. 142–150.
  • T. Nie, A decoupled and conservative difference scheme with fourth-order accuracy for the symmetric regularized long wave equations, Appl. Math. Comput. 219(17) (2013), pp. 9461–9468.
  • O. Oruc, A computational method based on Hermite wavelets for two-dimensional Sobolev and regularized long wave equations in fluids, Numer. Methods Partial Differ. Equ. 34(5) (2018), pp. 1693–1715.
  • O. Oruc, A. Esen, and F. Bulut, A strang splitting approach combined with Chebyshev wavelets to solve the regularized long-wave equation numerically, Mediterr. J. Math. 17(5) (2020), pp. 1–18.
  • D.H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech. 25(2) (1966), pp. 321–330.
  • M. Polat and O. Oruc, A combination of Lie group-based high order geometric integrator and delta-shaped basis functions for solving Korteweg–de Vries (KdV) equation, Int. J. Geom. Methods Modern Phys. 18(13) (2021), pp. 2150216.
  • J.I. Ramos and C.M. Garca-Lopez, Time-linearized, compact methods for the inviscid GRLW equation subject to initial Gaussian conditions, Appl. Math. Model. 48 (2017), pp. 353–383.
  • C.E. Seyler and D.C. Fenstermacler, A symmetric regularized long wave equation, Phys. Fluids 27(1) (1984), pp. 4–7.
  • Y. Shang and B. Guo, Analysis of Chebyshev pseudospectral method for multi-dimensional generalized SRLW equations, Appl. Math. Mech. 24(10) (2003), pp. 1035–1048.
  • Z.Z. Sun and Q.D. Zhu, On Tsertsvadze's difference scheme for the Kuramoto–Tsuzuki equation, J. Comput. Appl. Math. 98(2) (1998), pp. 289–304.
  • T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation, J. Math. Anal. Appl. 412(1) (2014), pp. 155–167.
  • T. Wang, L. Zhang, and F. Chen, Conservative schemes for the symmetric regularized long wave equations, Appl. Math. Comput. 190(2) (2007), pp. 1063–1080.
  • T. Wang, B. Guo, and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schröinger equation in two dimensions, J. Comput. Phys. 243 (2013), pp. 382–399.
  • B. Wang, T. Sun, and D. Liang, The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math. 356 (2019), pp. 98–117.
  • Y. Xu, B. Hu, X. Xie, and J. Hu, Mixed finite element analysis for dissipative SRLW equations with damping term, Appl. Math. Comput. 218(9) (2012), pp. 4788–4797.
  • S. Yimnet, B. Wongsaijai, T. Rojsiraphisal, and K. Poochinapan, Numerical implementation for solving the symmetric regularized long wave equation, Appl. Math. Comput. 273(15) (2016), pp. 809–825.
  • L. Zhang, A finite difference scheme for generalized regularized long-wave equation, Appl. Math. Comput. 168(2) (2005), pp. 962–972.
  • M. Zhao, Y. Liu, and H. Li, Fully discrete two-step mixed element method for the symmetric regularized long wave equation, Int. J. Model. Simul. Sci. Comput. 05(03) (2014), pp. 1450007.
  • Y. Zhou, Application of Discrete Functional Analysis to the Finite Difference Method, Inter. Acad. Publishers, Beijing, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.