274
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Parameter uniform fitted mesh finite difference scheme for elliptical singularly perturbed problems with mixed shifts in two dimensions

Pages 1264-1283 | Received 07 Oct 2022, Accepted 31 Jan 2023, Published online: 21 Feb 2023

References

  • Andre Longtin and John G. Milton, Complex oscillations in the human pupil light reflex with ‘mixed’ and delayed feedback, Math. Biosci. 90(1-2) (1988), pp. 183–199.
  • V.Y. Glizer, Asymptotic solution of a boundary-value problem for linear singularly-perturbed functional differential equations arising in optimal control theory, J. Optim. Theory. Appl. 106(2) (2000), pp. 309–335.
  • John Mallet-Paret and Roger D. Nussbaum, A differential-delay equation arising in optics and physiology, SIAM J. Math. Anal. 20(2) (1989), pp. 249–292.
  • M.W. Derstine, H.M. Gibbs, F.A. Hopf, and D.L. Kaplan, Bifurcation gap in a hybrid optically bistable system, Phys. Rev. A. 26(6) (1982), pp. 3720.
  • Richard B. Stein, Some models of neuronal variability, Biophys. J. 7(1) (1967), pp. 37–68.
  • Charles G. Lange and Robert M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math. 42(3) (1982), pp. 502–531.
  • Charles G. Lange and Robert M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. v. small shifts with layer behavior, SIAM J. Appl. Math. 54(1) (1994), pp. 249–272.
  • Charles G. Lange and Robert M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations. vi. small shifts with rapid oscillations, SIAM J. Appl. Math. 54(1) (1994), pp. 273–283.
  • M.K. Kadalbajoo and K.K. Sharma, Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. Optim. Theory. Appl. 115(1) (2002), pp. 145–163.
  • Mohan K. Kadalbajoo and Kapil K. Sharma, Numerical analysis of singularly perturbed delay differential equations with layer behavior, Appl. Math. Comput. 157(1) (2004), pp. 11–28.
  • Mohan K. Kadalbajoo and Kapil K. Sharma, ϵ-uniform fitted mesh method for singularly perturbed differential-difference equations: Mixed type of shifts with layer behavior, Int. J. Comput. Math. 81(1) (2004), pp. 49–62.
  • M.K. Kadalbajoo and K.K. Sharma, Numerical treatment of boundary value problems for second order singularly perturbed delay differential equations, Comput. Appl. Math. 24 (2005), pp. 151–172.
  • M.K. Kadalbajoo and K.K. Sharma, An exponentially fitted finite difference scheme for solving boundary-value problems for singularly-perturbed differential–difference equations: Small shifts of mixed type with layer behavior, J. Comput. Anal. Appl. 6(1-4) (2006), pp. 39–55.
  • Mohan K. Kadalbajoo and Kapil K. Sharma, An ε-uniform convergent method for a general boundary-value problem for singularly perturbed differential–difference equations: Small shifts of mixed type with layer behavior, J. Comput. Methods Sci. Eng. 6(1-4) (2006), pp. 39–55.
  • Mohan K. Kadalbajoo and Kapil K. Sharma, A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations, Appl. Math. Comput. 197(2) (2008), pp. 692–707.
  • Mohan K. Kadalbajoo, Kailash C. Patidar, and Kapil K. Sharma, ε-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general DDES, Appl. Math. Comput. 182(1) (2006), pp. 119–139.
  • P. Pramod Chakravarthy and R. Nageshwar Rao, A modified numerov method for solving singularly perturbed differential–difference equations arising in science and engineering, Results Phys. 2 (2012), pp. 100–103.
  • P. Pramod Chakravarthy and Kamalesh Kumar, A novel method for singularly perturbed delay differential equations of reaction-diffusion type, Differ. Equ. Dyn. Syst. 29(3) (2021), pp. 723–734.
  • P. Pramod Chakravarthy, S. Dinesh Kumar, and R. Nageshwar Rao, Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension, Int. J. Appl. Comput. Math. 3(3) (2017), pp. 1703–1717.
  • P. Pramod Chakravarthy and Kamalesh Kumar, An adaptive mesh method for time dependent singularly perturbed differential–difference equations, Nonlinear Eng. 8(1) (2019), pp. 328–339.
  • R. Nageshwar Rao and P. Pramod Chakravarthy, Fitted numerical methods for singularly perturbed one-dimensional parabolic partial differential equations with small shifts arising in the modelling of neuronal variability, Differ. Equ. Dyn. Syst. 27(1) (2019), pp. 1–18.
  • Kamalesh Kumar, P. Pramod Chakravarthy, Higinio Ramos, and Jesús Vigo-Aguiar, A stable finite difference scheme and error estimates for parabolic singularly perturbed PDES with shift parameters, J. Comput. Appl. Math. 405(2) (2020), Article ID 113050.
  • Komal Bansal, Pratima Rai, and Kapil K. Sharma, Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments, Differ. Equ. Dyn. Syst 25(2) (2017), pp. 327–346.
  • Komal Bansal and Kapil K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms. 75(1) (2017), pp. 113–145.
  • Komal Bansal and Kapil K. Sharma, Parameter-robust numerical scheme for time-dependent singularly perturbed reaction–diffusion problem with large delay, Numer. Funct. Anal. Optim. 39(2) (2018), pp. 127–154.
  • Vikas Gupta, Mukesh Kumar, and Sunil Kumar, Higher order numerical approximation for time dependent singularly perturbed differential–difference convection–diffusion equations, Numer. Methods. Partial. Differ. Equ. 34(1) (2018), pp. 357–380.
  • John J.H. Miller, Eugene O'Riordan, and Grigorii I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, 2012.
  • Hans-Görg Roos, Martin Stynes, and Lutz Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-diffusion-reaction and Flow Problems Vol. 24, Springer Science & Business Media, 2008.
  • Carmelo Clavero, J. Gracia, and Eugene O'Riordan, A parameter robust numerical method for a two dimensional reaction-diffusion problem, Math. Comput. 74(252) (2005), pp. 1743–1758.
  • A compact finite difference scheme for 2d reaction–diffusion singularly perturbed problems, J. Comput. Appl. Math. 192(1) (2006), pp. 152–167.
  • R. Bruce Kellogg, Niall Madden, and Martin Stynes, A parameter-robust numerical method for a system of reaction–diffusion equations in two dimensions, Numer. Methods Partial Differ. Equ. Int. J. 24(1) (2008), pp. 312–334.
  • Natalia Kopteva, Maximum norm error analysis of a 2d singularly perturbed semilinear reaction–diffusion problem, Math. Comput. 76(258) (2007), pp. 631–646.
  • Natalia Kopteva, Maximum norm a posteriori error estimate for a 2d singularly perturbed semilinear reaction–diffusion problem, SIAM. J. Numer. Anal. 46(3) (2008), pp. 1602–1618.
  • Natalia Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed reaction–diffusion problems on anisotropic meshes, SIAM. J. Numer. Anal. 53(6) (2015), pp. 2519–2544.
  • Natalia Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction–diffusion problems (2016).
  • Kamalesh Kumar and Pramod Chakravarthy Podila, A new stable finite difference scheme and its error analysis for two-dimensional singularly perturbed convection–diffusion equations, Numer. Methods. Partial. Differ. Equ. 38(5) (2022), pp. 1215–1231.
  • Thai Anh Nhan and Vinh Quang Mai, On Bakhvalov-type meshes for a linear convection-diffusion problem in 2d, Math. Commun. 26(2) (2021), pp. 121–130.
  • The Bakhvalov mesh: A complete finite-difference analysis of two-dimensional singularly perturbed convection–diffusion problems, Numer. Algorithms. 87(1) (2021), pp. 203–221.
  • H. Han and R.B. Kellogg, Differentiability properties of solutions of the equation -εˆ2δu+ru=f(x,y) in a square, SIAM J. Math. Anal. 21(2) (1990), pp. 394–408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.