377
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1340-1355 | Received 29 Dec 2022, Accepted 27 Feb 2023, Published online: 16 Mar 2023

References

  • M. Abdou, A. Soliman, and S. El-Basyony, New application of exp-function method for improved Boussinesq equation, Phys. Lett. A. 369 (2007), pp. 469–475.
  • M.J. Ablowitz, M. Ablowitz, P. Clarkson, and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Vol. 149, Cambridge University Press, Boulder, 1991.
  • M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
  • I. Ali, A.R. Seadawy, S.T.R. Rizvi, M. Younis, and K. Ali, Conserved quantities along with Painleve analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model, Int. J. Mod. Phys. B 34 (2020), Article 2050283.
  • H.M. Baskonus, Dark and trigonometric soliton solutions in asymmetrical Nizhnik-Novikov-Veselov equation with (2+ 1)-dimensional, Int. J. Optim. Ctrl.: Theories Appl. (IJOCTA) 11 (2021), pp. 92–99.
  • H.M. Baskonus and H. Bulut, Analytical studies on the (1+ 1)-dimensional nonlinear dispersive modified Benjamin–Bona–Mahony equation defined by seismic sea waves, Waves Random Complex Media 25 (2015), pp. 576–586.
  • H.M. Baskonus, A.A. Mahmud, K.A. Muhamad, and T. Tanriverdi, A study on Caudrey–Dodd–Gibbon–Sawada–Kotera partial differential equation, Math. Methods Appl. Sci. 45 (2022), pp. 8737–8753.
  • H.M. Baskonus, A.A. Mahmud, K.A. Muhamad, T. Tanriverdi, and W. Gao, Studying on Kudryashov-Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles, Therm. Sci.26 (2022), pp. 1229–1244.
  • G. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences Vol. 81, Springer-Verlag, New York, 1989.
  • F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. – I, Il Nuovo Cim. B (1971–1996) 32 (1976), pp. 201–242.
  • C. Dai and J. Zhang, Chaotic behaviors in the (2+ 1)-dimensional breaking soliton system, Chaos Solit. Fractals 39 (2009), pp. 889–894.
  • M.T. Darvishi and M. Najafi, Some exact solutions of the (2+ 1)-dimensional breaking soliton equation using the three-wave method, Int. J. Comput. Math. Sci. 6 (2012), pp. 13–16.
  • F.-F. Ge and S.-F. Tian, Mechanisms of nonlinear wave transitions in the (2+ 1)-dimensional generalized breaking soliton equation, Nonlinear. Dyn. 105 (2021), pp. 1753–1764.
  • X. Geng and C. Cao, Explicit solutions of the 2+ 1-dimensional breaking soliton equation, Chaos Solit. Fractals 22 (2004), pp. 683–691.
  • M. Hafez, M.N. Alam, and M. Akbar, Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system, J. King Saud Univ. Sci. 27 (2015), pp. 105–112.
  • J.-H. He and X.-H. Wu, Exp-function method for nonlinear wave equations, Chaos Solit. Fractals 30 (2006), pp. 700–708.
  • X. Hu, S. Lin, and L. Wang, Integrability, multiple-cosh, lumps and lump-soliton solutions to a (2+ 1)-dimensional generalized breaking soliton equation, Commun. Nonlinear Sci. Numer. Simul. 91 (2020), Article 105447.
  • M. Iqbal, A.R. Seadawy, and S. Althobaiti, Mixed soliton solutions for the (2+ 1)-dimensional generalized breaking soliton system via new analytical mathematical method, Results Phys. 32 (2022), Article 105030.
  • L. Ji, X. You-Sheng, and W. Feng-Min, Evolution property of soliton solutions for the Whitham-Broer-Kaup equation and variant Boussinesq equation, Chin. Phys. 12 (2003), pp. 1049–1053
  • L. Kaur and A.-M. Wazwaz, Einstein's vacuum field equation: Painlevé analysis and lie symmetries, Waves Random Complex Media 31 (2021), pp. 199–206.
  • L. Kaur and A.-M. Wazwaz, Dynamical analysis of soliton solutions for space-time fractional Calogero-Degasperis and Sharma-Tasso-Olver equations, Rom. Rep. Phys. 74 (2022), pp. 108.
  • L. Kaur and A.-M. Wazwaz, Optical soliton solutions of variable coefficient Biswas–Milovic (bm) model comprising Kerr law and damping effect, Optik. 266 (2022), Article 169617.
  • C.M. Khalique and T. Motsepa, Conservation laws and solutions for a (2+ 1)-dimensional generalized breaking soliton system, in AIP Conference Proceedings, Vol. 1978, AIP Publishing LLC, 2018, pp. 210003.
  • K. Khan and M.A. Akbar, Traveling wave solutions of the (2+ 1)-dimensional Zoomeron equation and the Burgers equations via the mse method and the exp-function method, Ain Shams Eng. J. 5 (2014), pp. 247–256.
  • Y.-S. Li and Y.-J. Zhang, Symmetries of a (2+ 1)-dimensional breaking soliton equation, J. Phys. A Math. Theor. 26 (1993), pp. 7487.
  • Y.-L. Ma and B.-Q. Li, Interactions between soliton and rogue wave for a (2+ 1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl. 78 (2019), pp. 827–839.
  • W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60 (1992), pp. 650–654.
  • W. Malfliet, The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math. 164-165 (2004), pp. 529–541.
  • W. Malfliet and W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr. 54 (1996), pp. 563–568
  • J. Manafian, B. Mohammadi-Ivatloo, and M. Abapour, Lump-type solutions and interaction phenomenon to the (2+ 1)-dimensional breaking soliton equation, Appl. Math. Comput. 356 (2019), pp. 13–41.
  • M. Marin, A. Seadawy, S. Vlase, and A. Chirila, On mixed problem in thermoelasticity of type iii for cosserat media, J. Taibah Univ. Sci. 16 (2022), pp. 1264–1274.
  • V.B. Matveev and V. Matveev, Darboux Transformations and Solitons, Springer Berlin, Heidelberg, 1991.
  • E. Moradi, H. Varasteh, A. Abdollahzadeh, and M. Mostafaei-Malekshah, The exp-function method for solving two dimensional sine-Bratu type equations, Appl. Math. (Irvine) 5 (2014), pp. 1212–1217.
  • R. Radha and M. Lakshmanan, Dromion like structures in the (2+ 1)-dimensional breaking soliton equation, Phys. Lett. A 197 (1995), pp. 7–12.
  • B. Ren and P.-C. Chu, Dynamics of d'alembert wave and soliton molecule for a (2+ 1)-dimensional generalized breaking soliton equation, Chinese J. Phys. 74 (2021), pp. 296–301.
  • S. Rizvi, A.R. Seadawy, F. Ashraf, M. Younis, H. Iqbal, and D. Baleanu, Lump and interaction solutions of a geophysical Korteweg–de Vries equation, Results Phys. 19 (2020), Article 103661.
  • C. Rogers and W.F. Shadwick, B. Transformations: Their Applications Mathematics in Science and Engineering Vol. 161, 1982.
  • S. Sahmani, M. Shahali, M. Ghadiri Nejad, A. Khandan, M. Aghdam, and S. Saber-Samandari, Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering, Eur. Phys. J. Plus 134 (2019), pp. 1–11.
  • A.R. Seadawy, Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl. 67 (2014), pp. 172–180.
  • S. Singh, L. Kaur, R. Sakthivel, and K. Murugesan, Computing solitary wave solutions of coupled nonlinear hirota and Helmholtz equations, Phys. A: Stat. Mech. Appl. 560 (2020), Article 125114.
  • M. Song-Hua, Q. Ji-Ye, and F. Jian-Ping, Annihilation solitons and chaotic solitons for the (2+ 1)-dimensional breaking soliton system, Commun. Theor. Phys. 48 (2007), pp. 662–666
  • T. Tanriverdi, An unnoticed way of obtaining the Binet form for Fibonacci numbers, New Trend Math. Sci. 2 (2018), pp. 97–101.
  • T. Tanriverdi, Classical way of looking at the Lane-Emden equation, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), pp. 271–276.
  • T. Tanriverdi and N. AĞIRAĞAÇ, Differential transform applied to certain ode, Adv. Differ. Equ. Control Process. 19 (2018), pp. 213–235.
  • T. Tanriverdi, H.M. Baskonus, A.A. Mahmud, and K.A. Muhamad, Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system, Ecol. Complex. 48 (2021), Article 100966.
  • S. Uddin, N. Alam, S.S. Hossain, H. Samiu, and M.A. Akbar, Some new exact traveling wave solutions to the (3+ 1)-dimensional Zakharov-Kuznetsov equation and the Burgers equations via exp-expansion method, Front. Math. Its Appl. 1 (2014), pp. 1–8.
  • A.-M. Wazwaz, Integrable (2+ 1)-dimensional and (3+ 1)-dimensional breaking soliton equations, Phys. Scr. 81 (2010), Article 035005.
  • A.-M. Wazwaz, A new integrable (2+ 1)-dimensional generalized breaking soliton equation: N-soliton solutions and traveling wave solutions, Commun. Theor. Phys. 66 (2016), pp. 385–388
  • A.-M. Wazwaz and L. Kaur, A new nonlinear integrable fifth-order equation: Multiple soliton solutions with unusual phase shifts, Phys. Scr. 93 (2018), Article 115201.
  • L. Wei, Y. Zhou, and Q. Liu, Traveling wave solutions of two types of generalized breaking soliton equations, J. Appl. Anal. Comput. 11 (2021), pp. 2151–2176.
  • X.-H.B. Wu and J.-H. He, Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method, Comput. Math. Appl. 54 (2007), pp. 966–986.
  • G.-Q. Xu, Integrability of a (2+ 1)-dimensional generalized breaking soliton equation, Appl. Math. Lett. 50 (2015), pp. 16–22.
  • Z.-Y. Yan and H.-Q. Zhang, Constructing families of soliton-like solutions to a (2+ 1)-dimensional breaking soliton equation using symbolic computation, Comput. Math. Appl. 44 (2002), pp. 1439–1444.
  • C. Yong, L. Biao, and Z. Hong-Qing, Symbolic computation and construction of soliton-like solutions to the (2+ 1)-dimensional breaking soliton equation, Commun. Theor. Phys. 40 (2003), pp. 137–142
  • J.-F. Zhang and J.-P. Meng, New localized coherent structures to the (2+ 1)-dimensional breaking soliton equation, Phys. Lett. A 321 (2004), pp. 173–178.
  • R.-F. Zhang, M.-C. Li, J.-Y. Gan, Q. Li, and Z.-Z. Lan, Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos Solit. Fractals 154 (2022), Article 111692.
  • S. Zhang, A generalized new auxiliary equation method and its application to the (2+ 1)-dimensional breaking soliton equations, Appl. Math. Comput. 190 (2007), pp. 510–516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.