192
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A fast implicit difference scheme for solving high-dimensional time-space fractional nonlinear Schrödinger equation

Pages 1419-1438 | Received 05 Jun 2022, Accepted 08 Mar 2023, Published online: 27 Mar 2023

References

  • B.N. Achar, B.T. Yale, and J.W. Hanneken, Time fractional Schrödinger equation revisited, Adv. Math. Phys. 2013 (2013), pp. 1–11.
  • M. Almushaira, Fast high-accuracy compact conservative difference schemes for solving the nonlinear Schrödinger equation, J. Differ. Equ. Appl. 28(1) (2022), pp. 10–38.
  • M. Almushaira, H. Bhatt, and A. Al-Rassas, Fast high-order method for multi-dimensional space-fractional reaction–diffusion equations with general boundary conditions, Math. Comput. Simul.182 (2021), pp. 235–258.
  • M. Almushaira and F. Liu, Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations, SN Partial Differ. Equ. Appl. 1(6) (2020), pp. 1–29.
  • M. Almushaira and F. Liu, A fast conservative scheme for the space fractional nonlinear Schrödinger equation with wave operator, J. Math. Study 54(4) (2021), pp. 407–426.
  • S. Alzahrani, A. Khaliq, T. Biala, and K. Furati, Fourth-order time stepping methods with matrix transfer technique for space-fractional reaction–diffusion equations, Appl. Numer. Math. 146 (2019), pp. 123–144.
  • W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM. J. Numer. Anal. 50(2) (2012), pp. 492–521.
  • W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Math. Comput. 82(281) (2013), pp. 99–128.
  • A. Bonito and J. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comput. 84(295) (2015), pp. 2083–2110.
  • Y. Chang and H. Chen, Fourth-order finite difference scheme and efficient algorithm for nonlinear fractional Schrödinger equations, Adv. Differ. Equ. 2020(1) (2020), pp. 1–18.
  • H.-f. Ding and Y.-X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. & Math. Appl. 63(7) (2012), pp. 1135–1146.
  • J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl. 344(2) (2008), pp. 1005–1017.
  • S. Duo and Y. Zhang, Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys. 18(2) (2015), pp. 321–350.
  • W. Fan and H. Qi, An efficient finite element method for the two-dimensional nonlinear time-space fractional Schrödinger equation on an irregular convex domain, Appl. Math. Lett. 86 (2018), pp. 103–110.
  • M. Fei, N. Wang, C. Huang, and X. Ma, A second-order implicit difference scheme for the nonlinear time-space fractional Schrödinger equation, Appl. Numer. Math. 153 (2020), pp. 399–411.
  • R. Garrappa, Numerical evaluation of two and three parameter Mittag–Leffler functions, SIAM. J. Numer. Anal. 53(3) (2015), pp. 1350–1369.
  • B. Guo and Z. Huo, Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation, Fract. Calc. Appl. Anal. 16(1) (2013), pp. 226–242.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, i, Fract. Calc. Appl. Anal. 8(3) (2005), pp. 323–341.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) – with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9(4) (2006), pp. 333–349.
  • S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21(3) (2017), pp. 650–678.
  • M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20(1) (2017), pp. 7–51.
  • N. Laskin, Fractals and quantum mechanics, Chaos: An Interdisciplinary J. Nonlinear Sci. 10(4) (2000), pp. 780–790.
  • N. Laskin, Fractional quantum mechanics, Phys. Rev. E. 62(3) (2000), pp. 3135–3145.
  • N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268(4-6) (2000), pp. 298–305.
  • N. Laskin, Fractional Schrödinger equation, Phys. Rev. E. 66(5) (2002), pp. 056108.
  • D. Li, J. Wang, and J. Zhang, Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrodinger equations, SIAM. J. Sci. Comput. 39(6) (2017), pp. A3067–A3088.
  • M. Li, X.-M. Gu, C. Huang, M. Fei, and G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys. 358 (2018), pp. 256–282.
  • M. Li, C. Huang, and P. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms. 74(2) (2017), pp. 499–525.
  • M. Li, Y. Wei, B. Niu, and Y.-L. Zhao, Fast L2-1σ Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives, Appl. Math. Comput. 416 (2022), pp. 126734.
  • Y. Liang, Z. Yao, and Z. Wang, Fast high order difference schemes for the time fractional telegraph equation, Numer. Methods. Partial. Differ. Equ. 36(1) (2020), pp. 154–172.
  • H.-l. Liao, D. Li, and J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations, SIAM. J. Numer. Anal. 56(2) (2018), pp. 1112–1133.
  • A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth, and G.E. Karniadakis, What is the fractional laplacian? A comparative review with new results, J. Comput. Phys. 404 (2020), pp. 109009.
  • Q. Liu, F. Zeng, and C. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math. 92(7) (2015), pp. 1439–1451.
  • M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 45(8) (2004), pp. 3339–3352.
  • I. Podlubny, Fractional Differential Equations, Vol. 198 of Mathematics in Science and Engineering, 1999.
  • M. Ran and C. Zhang, Linearized Crank–Nicolson scheme for the nonlinear time-space fractional Schrödinger equations, J. Comput. Appl. Math. 355 (2019), pp. 218–231.
  • J.-Y. Shen, Z.-Z. Sun, and R. Du, Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time, East. Asian. J. Applied. Math. 8(4) (2018), pp. 834–858.
  • D.P. Simpson, Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion, Ph.D. diss, Queensland University of Technology, 2008.
  • C. Van Loan, Computational Frameworks for the Fast Fourier Transform, Society for Industrial and Applied Mathematics, 1992.
  • D. Wang, A. Xiao, and W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242 (2013), pp. 670–681.
  • P. Wang and C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys. 293 (2015), pp. 238–251. Fractional PDEs.
  • S. Wang and M. Xu, Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys. 48(4) (2007), pp. 043502.
  • L. Wei, Y. He, X. Zhang, and S. Wang, Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite. Elem. Anal. Des. 59 (2012), pp. 28–34.
  • L. Wei, X. Zhang, S. Kumar, and A. Yildirim, A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schördinger system, Comput. & Math. Appl. 64(8) (2012), pp. 2603–2615.
  • S.-S. Xie, G.-X. Li, and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation, Comput. Methods. Appl. Mech. Eng. 198(9) (2009), pp. 1052–1060.
  • Y. Yan, Z.-Z. Sun, and J. Zhang, Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys. 22(4) (2017), pp. 1028–1048.
  • Q. Yang, I. Turner, F. Liu, and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM. J. Sci. Comput. 33(3) (2011), pp. 1159–1180.
  • B. Yin, J. Wang, Y. Liu, and H. Li, A structure preserving difference scheme with fast algorithms for high dimensional nonlinear space-fractional Schrödinger equations, J. Comput. Phys. 425 (2021), pp. 109869.
  • H. Zhang, X. Jiang, C. Wang, and W. Fan, Galerkin–Legendre spectral schemes for nonlinear space fractional Schrödinger equation, Numer. Algor. 79(1) (2018), pp. 337–356.
  • X. Zhao, Z.-Z. Sun, and Z.-P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM. J. Sci. Comput. 36(6) (2014), pp. A2865–A2886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.