136
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analysis of a robust implicit scheme for space–time fractional stochastic nonlinear diffusion wave model

, &
Pages 1625-1645 | Received 20 Feb 2023, Accepted 23 Apr 2023, Published online: 09 May 2023

References

  • W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, J. Acoust. Soc. Am. 115(4) (2004), pp. 1424–1430.
  • G. Chen, J. Duan, and J. Zhang, Approximating dynamics of a singularly perturbed stochastic wave equation with a random dynamical boundary condition, SIAM J. Math. Anal. 45(5) (2013), pp. 2790–2814.
  • M. Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul. 71(1) (2006), pp. 16–30.
  • M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ. Int. J. 26(2) (2010), pp. 448–479.
  • H. Ding and C. Li, High-order algorithms for Riesz derivative and their applications (v), Numer. Methods Partial Differ. Equ. 33(5) (2017), pp. 1754–1794.
  • E. Doha, A. Bhrawy, and S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model. 36(10) (2012), pp. 4931–4943.
  • Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal. 40(4) (2002), pp. 1421–1445.
  • N. Engheta, Fractional curl operator in electromagnetics, Microw. Opt. Technol. Lett. 17(2) (1998), pp. 86–91.
  • N.J. Ford, J. Xiao, and Y. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal. 14(3) (2011), pp. 454–474.
  • R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2011.
  • J. Huang, Y. Tang, L. Vázquez, and J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms. 64(4) (2013), pp. 707–720.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (ii)—with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9(4) (2006), pp. 333–349.
  • Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235(11) (2011), pp. 3285–3290.
  • H. Khan, J. Gomez-Aguilar, A. Alderremy, S. Aly, and D. Baleanu, On the approximate solution of fractional-order Whitham–Broer–Kaup equations, Mod. Phys. Lett. B. 35(11) (2021), p. 2150192.
  • A.A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204, Elsevier Science Limited, Amsterdam, 2006.
  • M. Kovács, S. Larsson, and A. Mesforush, Finite element approximation of the Cahn–Hilliard–Cook equation, SIAM J. Numer. Anal. 49(6) (2011), pp. 2407–2429.
  • Y. Li and N. Sun, Numerical solution of fractional differential equations using the generalized block pulse operational matrix, Comput. Math. Appl. 62(3) (2011), pp. 1046–1054.
  • X. Li and C. Xu, A space–time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47(3) (2009), pp. 2108–2131.
  • C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Vol. 24, CRC Press, New York, 2015.
  • Y. Li, Y. Wang, and W. Deng, Galerkin finite element approximations for stochastic space–time fractional wave equations, SIAM J. Numer. Anal. 55(6) (2017), pp. 3173–3202.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), pp. 1533–1552.
  • Y. Liu, Y. Du, H. Li, S. He, and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem, Comput. Math. Appl. 70(4) (2015), pp. 573–591.
  • Z. Liu, A. Cheng, and X. Li, A novel finite difference discrete scheme for the time fractional diffusion-wave equation, Appl. Numer. Math. 134 (2018), pp. 17–30.
  • R.L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59(5) (2010), pp. 1586–1593.
  • R. Martin, J.J. Quintana, A. Ramos, and I. De La Nuez, Modeling of electrochemical double layer capacitors by means of fractional impedance, J. Comput. Nonlinear Dyn. 3(2) (2008), p. 021303.
  • R.K. Maurya, V. Devi, and V.K. Singh, Stability and convergence of multistep schemes for 1D and 2D fractional model with nonlinear source term, Appl. Math. Model. 89 (2021), pp. 1721–1746.
  • M.M. Meerschaert and E. Scalas, Coupled continuous time random walks in finance, Physica A Stat. Mech. Appl. 370(1) (2006), pp. 114–118.
  • M.M. Meerschaert, R.L. Schilling, and A. Sikorskii, Stochastic solutions for fractional wave equations, Nonlinear Dyn. 80(4) (2015), pp. 1685–1695.
  • R. Metzler and T.F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Chem. Phys. 284(1–2) (2002), pp. 67–90.
  • J.B. Mijena and E. Nane, Space–time fractional stochastic partial differential equations, Stoch. Process. Their Appl. 125(9) (2015), pp. 3301–3326.
  • I. Podlubny, Fractional differential equations, Math. Sci. Eng. 198 (1999), pp. 41–119.
  • E.M. Rabei, I.M. Rawashdeh, S. Muslih, and D. Baleanu, Hamilton–Jacobi formulation for systems in terms of Rieszs fractional derivatives, Int. J. Theor. Phys. 50(5) (2011), pp. 1569–1576.
  • A.I. Saichev and G.M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos. Interdiscipl. J. Nonlinear Sci. 7(4) (1997), pp. 753–764.
  • S. Shen, F. Liu, V. Anh, and I. Turne, The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation, IMA J. Appl. Math. 73(6) (2008), pp. 850–872.
  • A.K. Singh and M. Mehra, Difference methods for stochastic space fractional diffusion equation driven by additive space–time white noise via Wong–Zakai approximation, J. Math. Chem. 61(1) (2022), pp. 1–28.
  • N. Srivastava, A. Singh, Y. Kumar, and V.K. Singh, Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix, Appl. Numer. Math. 161 (2021), pp. 244–274.
  • Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math.56(2) (2006), pp. 193–209.
  • T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law, J. Acoust. Soc. Am. 96(1) (1994), pp. 491–500.
  • B.J. Szekeres and F. Izsák, Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems, Appl. Math. 62(1) (2017), pp. 15–36.
  • B.J. Szekeres and F. Izsák, Finite difference approximation of space-fractional diffusion problems: the matrix transformation method, Comput. Math. Appl. 73(2) (2017), pp. 261–269.
  • P.J. Torvik and R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. ASME J. Appl. Mech. 51(2) (1984), pp. 294–298.
  • J.M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl. 11(1) (1975), pp. 3–5.
  • H. Wang and T.S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput. 34(5) (2012), pp. A2444–A2458.
  • H. Wang and N. Du, A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, J. Comput. Phys. 240 (2013), pp. 49–57.
  • Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34(1) (2010), pp. 200–218.
  • Q. Yang, I. Turner, T. Moroney, and F. Liu, A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations, Appl. Math. Model.38(15–16) (2014), pp. 3755–3762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.