174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A stable pressure-correction MAC scheme for the fluid-Poroelastic material interaction problem

ORCID Icon, &
Pages 1683-1701 | Received 03 Feb 2023, Accepted 28 Apr 2023, Published online: 11 May 2023

References

  • I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model, Numer. Math. 140(2) (2018), pp. 513–553.
  • I. Ambartsumyan, V.J. Ervin, T. Nguyen, and I. Yotov, A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media, ESAIM: Math. Model. Numer. Anal. 53(6) (2019), pp. 1915–1955.
  • N. Atalla, R. Panneton, and P. Debergue, A mixed displacement-pressure formulation for poroelastic materials, J. Acoust. Soc. Am. 104(1998), pp. 1444–1452.
  • S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys. 228(21) (2009), pp. 7986–8014.
  • G. Beavers and D. Joseph, Boundary conditions at a naturally impermeable wall, J. Fluid Mech. 30(1967), pp. 197–207.
  • W. Boon, M. Hornkjol, M. Kuchta, K.-A. Mardal, and R. Ruiz-Baier, Parameter-robust methods for the Biot-Stokes interfacial coupling without Lagrange multipliers, J. Comput. Phys. 467(2022), pp. 111464. DOI:10.1016/j.jcp.2022.111464.
  • M. Bukač, I. Yotov, and P. Zunino, An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure, Numer. Methods Partial Differ. Equ. 31(4) (2015), pp. 1054–1100.
  • M. Bukač, I. Yotov, R. Zakerzadeh, and P. Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach, Comput. Methods Appl. Mech. Eng. 292(2015), pp. 138–170.
  • M. Bukač, A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material, J. Comput. Phys. 313(2016), pp. 377–399.
  • A. Cesmelioglu, Analysis of the coupled Navier-Stokes/Biot problem, J. Math. Anal. Appl. 456(2) (2017), pp. 970–991.
  • A. Cesmelioglu and P. Chidyagwai, Numerical analysis of the coupling of free fluid with a poroelastic material, Numer. Methods Partial Differ. Equ. 36(3) (2020), pp. 463–494.
  • J. Chen, Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity. Part II: three-dimensional solution, Int. J. Solids Struct. 31(2) (1994), pp. 169–202.
  • A. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22(1968), pp. 745–762.
  • J. Guermond, P. Minev, and J. Shen, Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions, SIAM J. Numer. Anal. 43(1) (2005), pp. 239–258.
  • J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195(2006), pp. 6011–6045.
  • J. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41(1) (2003), pp. 112–134.
  • J. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comp. 73(248) (2004), pp. 1719–1737.
  • L. Guo and W. Chen, Decoupled modified characteristic finite element method for the time-dependent Navier-Stokes/Biot problem, Numer. Methods Partial Differ. Equ. 38(6) (2022), pp. 1684–1712.
  • H. Han and X. Wu, A new mixed finite element formulation and the MAC method for the stokes equations, SIAM J. Numer. Anal. 35(1998), pp. 560–571.
  • Y. He and J. Shen, Unconditionally stable pressure-correction schemes for a linear fluid-structure interaction problem, Numer. Math. Theor. Mech. Appl. 7(4) (2014), pp. 537–554.
  • Y. He and J. Shen, Unconditionally stable pressure-correction schemes for a nonlinear fluid-structure interaction model, Commun. Appl. Math. Comput. 1(2019), pp. 61–80.
  • N. Koshiba, J. Ando, M. Chen, and T. Hisada, Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model, J. Biomech. Eng. 129(3) (2007), pp. 374–385.
  • H. Kunwar, H. Lee, and K. Seelman, Second-order time discretization for a coupled quasi-newtonian fluid-poroelastic system, Int. J. Numer. Methods Fluids. 92(7) (2020), pp. 687–702.
  • J. Li, M. Yao, M. Mahbub, and H. Zheng, The efficient rotational pressure-correction schemes for the coupling stokes/Darcy problem, Comput. Math. Appl. 79(2020), pp. 337–353.
  • A. Lozovskiy, M. Olshanskii, and Y. Vassilevski, A finite element scheme for the numerical solution of the Navier-Stokes/Biot coupled problem, Russian J. Numer. Anal. Math. Model. 37(3) (2022), pp. 159–174.
  • M. Murad, J. Guerreiro, and A. Loula, Micromechanical computational modeling of reservoir compaction and surface subsidence, Math. Contemp. 19(2000), pp. 41–69.
  • O. Oyekole and M. Bukac, Second-order, loosely coupled methods for fluid-poroelastic material interaction, Numer. Methods Partial Differ. Equ. 36(4) (2020), pp. 800–822.
  • J. Perot, Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys. 159(1) (2000), pp. 58–89.
  • J. Perot, Discrete conservation properties of unstructured mesh schemes, Annu. Rev. Fluid Mech. 43(2011), pp. 299–318.
  • R. Ruiz-Baier, M. Taffetani, H. Westermeyer, and I. Yotov, The Biot-Stokes coupling using total pressure: formulation, analysis and application to interfacial flow in the eye, Comput. Methods Appl. Mech. Eng. 389(2022), Article ID 114384. DOI:10.1016/j.cma.2021.114384.
  • J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29(1) (1992), pp. 57–77.
  • J. Shen, On error estimates of projection methods for Navier-Stokes equations: second-order schemes, Math. Comput. 65(215) (1996), pp. 1039–1065.
  • R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (i), Arch. Rational Mech. Anal. 32(1969), pp. 135–153.
  • L. Timmermans, P. Minev, and F. VanDeVosse, An approximate projection scheme for incompressible flow using spectral elements, Internat. J. Numer. Methods Fluids. 22(7) (1996), pp. 673–688.
  • B. Tully and Y. Ventikos, Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics, IEEE Trans. Biomed. Eng. 56(6) (2009), pp. 1644–1651.
  • H. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton, NJ, 2004.
  • X. Wang and H. Rui, The locking-free finite difference method based on staggered grids for the coupled Stokes-Biot problem, Int. J. Comput. Math. 99(10) (2022), pp. 2042–2068.
  • J. Wen and Y. He, A strongly conservative finite element method for the coupled Stokes-Biot model, Comput. Math. Appl. 80(5) (2020), pp. 1421–1442.
  • R. Zakerzadeh, M. Bukac, and P. Zunino, Computational analysis of energy distribution of coupled blood flow and arterial defomation, Int. J. Adv. Eng. Sci. Appl. Math. 8(2016), pp. 70–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.