139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation

, & ORCID Icon
Pages 1877-1895 | Received 05 Dec 2022, Accepted 28 May 2023, Published online: 30 Jun 2023

References

  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys.280 (2015), pp. 424–438.
  • X. Antoine, Q.L. Tang, and J.W. Zhang, On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations, Int. J. Comput. Math. 95(6–7) (2018), pp. 1423–1443.
  • Y.Y. Cai, J.X. Fu, J.F. Liu, and T.C. Wang, A fourth-order compact finite difference scheme for the quantum Zakharov system that perfectly inherits both mass and energy conservation, Appl. Numer. Math. 178 (2022), pp. 1–24.
  • H. Chen and M. Stynes, Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem, J. Sci. Comput. 79(1) (2019), pp. 624–647.
  • L. Chen and S.J. Lü, Spectral approximation for nonlinear time fractional Schrödinger equation on graded meshes, Int. J. Comput. Math. 99(12) (2022), pp. 2524–2541.
  • W. Chen, H.G. Sun, and X.C. Li, Fractional Derivative Modeling in Mechanics and Engineering, Springer, Singapore, 2022.
  • Q.X. Ding and P.J.Y. Wong, Quintic non-polynomial spline for time-fractional nonlinear Schrödinger equation, Adv. Differ. Equ. 2020 (2020), p. 577. doi:10.1186/s13662-020-03021-0.
  • M.F. Fei, W.H. Li, and Y.L. Yi, Numerical analysis of a fourth-order linearized difference method for nonlinear time-space fractional Ginzburg–Landau equation, Electron. Res. Arch. 30(10) (2022), pp. 3635–3659.
  • M.F. Fei, N. Wang, C.M. Huang, and X.H Ma, A second-order implicit difference scheme for the nonlinear time-space fractional Schrödinger equation, Appl. Numer. Math. 153 (2020), pp. 399–411.
  • G.H. Gao, R. Tang, and Q. Yang, A compact finite difference scheme for the fourth-order time multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions, Int. J. Numer. Anal. Model. 18(1) (2021), pp. 100–119.
  • B.L. Guo, X.K. Pu, and F.H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Science Press, Beijing, 2015.
  • A.R. Hadhoud, A.A.M. Rageh, and T. Radwan, Computational solution of the time-fractional Schrödinger equation by using trigonometric B-spline collocation method, Fractal Fract. 6(3) (2022), p. 127. doi:10.3390/fractalfract6030127.
  • J.L Hong, L.H. Ji, L.H. Kong, and T.C. Wang, Optimal error estimate of a compact scheme for nonlinear Schrödinger equation, Appl. Numer. Math. 120 (2017), pp. 68–81.
  • C.P. Li and F.H. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Boca Raton, FL, 2015.
  • M.Z. Li, X.H. Ding, and Q. Xu, Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation, Adv. Differ. Equ. 2018 (2018), p. 318. doi:10.1186/s13662-018-1743-3.
  • Y.X. Liang, Z.S. Yao, and Z.B. Wang, Fast high order difference schemes for the time fractional telegraph equation, Numer. Methods Partial Differ. Equ. 36(1) (2020), pp. 154–172.
  • H.L. Liao, W. Mclean, and J.W. Zhang, A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem, Commun. Comput. Phys. 30(2) (2021), pp. 567–601.
  • F.W. Liu, P.H. Zhuang, and Q.X. Liu, Numerical Methods for Fractional Partial Differential Equations and Their Applications, Science Press, Beijing, 2015 (in Chinese).
  • H.Y. Liu and S.J. Lü, A high-order numerical scheme for solving nonlinear time fractional reaction–diffusion equations with initial singularity, Appl. Numer. Math. 169 (2021), pp. 32–43.
  • J.F. Liu, T.C. Wang, and T. Zhang, A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation, Numer. Algorithm 92(2) (2023), pp. 1153–1182.
  • N. Liu and W. Jiang, A numerical method for solving the time fractional Schrödinger equation, Adv. Comput. Math. 44(4) (2018), pp. 1235–1248.
  • M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 45(8) (2004), pp. 3339–3352.
  • M.H. Ran and C.J. Zhang, Linearized Crank–Nicolson scheme for the nonlinear time-space fractional Schrödinger equations, J. Comput. Appl. Math. 355 (2019), pp. 218–231.
  • L. Ren, High order compact difference scheme for solving the time multi-term fractional sub-diffusion equations, AIMS Math. 7(5) (2022), pp. 9172–9188.
  • L. Ren and L. Liu, A high-order compact difference method for time fractional Fokker–Planck equations with variable coefficients, Comput. Appl. Math. 38(3) (2019), p. 101. doi:10.1007/s40314-019-0865-x
  • T. Sandev and Z. Tomovski, Fractional Equations and Models: Theory and Applications, Springer, Berlin, 2019.
  • B.K. Singh and P. Kumar, A new approximate solution of time-fractional, non-linear Schrödinger equations using fractional reduced differential transformation, preprint (2016).doi: 10.48550/arXiv.1611.07171
  • Z.Z. Sun and G.H. Gao, Finite Difference Methods for Fractional Differential Equations, 2nd ed., Science Press, Beijing, 2021 (in Chinese).
  • V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Volume 2: Applications, Higher Education Press, Beijing, 2013.
  • P.D. Wang and C.M. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys. 293 (2015), pp. 238–251.
  • T.C. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross–Pitaevskii equations in one dimension, J. Sci. Comput. 59(1) (2014), pp. 158–186.
  • T.C. Wang, A linearized, decoupled, and energy-preserving compact finite difference scheme for the coupled nonlinear Schrödinger equations, Numer. Methods Partial Differ. Equ. 33(3) (2017), pp. 840–867.
  • T.C. Wang and X.F. Zhao, Unconditional L∞-convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions, Calcolo 55(3) (2018), p. 34. doi:10.1007/s10092-018-0277-0
  • Y. Wang, G. Wang, L.L. Bu, and L.Q. Mei, Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation, Numer. Algorithm 88(1) (2021), pp. 419–451.
  • Y.M. Wang and L. Ren, Efficient compact finite difference methods for a class of time-fractional convection-reaction-diffusion equations with variable coefficients, Int. J. Comput. Math. 96(2) (2019), pp. 264–297.
  • S.S. Xie, G.X. Li, and S. Yi, Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation, Comput. Methods Appl. Mech. Eng. 198(9–12) (2009), pp. 1052–1060.
  • C.H. Zhang, J.W. Jin, H.W. Sun, and Q. Sheng, A spatially sixth-order hybrid L1-CCD method for solving time fractional Schrödinger equations, Appl. Math. 66(2) (2021), pp. 213–232.
  • P. Zhang and H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer. Algorithm 76(2) (2017), pp. 573–598.
  • T. Zhang and T.C. Wang, Uniform error bound of a conservative fourth-order compact finite difference scheme for the Zakharov system in the subsonic regime, Adv. Comput. Math. 48(4) (2022), p. 40. doi:10.1007/s10444-022-09944-4
  • Y. Zhang, A. Kumar, S. Kumar, D. Baleanu, and X.J. Yang, Residual power series method for time-fractional Schrödinger equations, J. Nonlinear Sci. Appl. 9(11) (2016), pp. 5821–5829.
  • G.Y. Zhao, N. An, and C.B. Huang, Optimal error analysis of the Alikhanov formula for a time-fractional Schrödinger equation, J. Appl. Math. Comput. 69(1) (2023), pp. 159–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.