88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computationally efficient techniques for spatial regression with differential regularization

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1971-1991 | Received 22 Nov 2022, Accepted 04 Jul 2023, Published online: 03 Aug 2023

References

  • P.R. Amestoy, T.A. Davis, and I.S. Duff, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Softw. 30(3) (sep 2004), pp. 381–388. ISSN 0098-3500. doi: 10.1145/1024074.1024081.
  • E. Arnone, L. Azzimonti, F. Nobile, and L.M. Sangalli, Modeling spatially dependent functional data via regression with differential regularization, J. Multivar. Anal. 170 (2019), pp. 275–295.
  • E. Arnone, L.M. Sangalli, and A. Vicini, Smoothing spatio-temporal data with complex missing data patterns, Stat. Model. 0(0) (2021), pp. 1471082X211057959.
  • E. Arnone, A. Clemente, L.M. Sangalli, E. Lila, J. Ramsay, and L. Formaggia, fdaPDE: Physics-Informed Spatial and Functional Data Analysis, (2022). Available at https://CRAN.R-project.org/package=fdaPDE. R package version 1.1-16.
  • L. Azzimonti, F. Nobile, L.M. Sangalli, and P. Secchi, Mixed finite elements for spatial regression with PDE penalization, SIAM/ASA J. Uncertain. Quantif. 2(1) (2014), pp. 305–335.
  • V. Baramidze, M.-J. Lai, and C. Shum, Spherical splines for data interpolation and fitting, SIAM. J. Sci. Comput. 28(1) (2006), pp. 241–259.ISSN 1064-8275.doi: 10.1137/040620722
  • D.M. Bates and G. Wahba, A truncated singular value decomposition and other methods for generalized cross-validation, Tech. Report 715, Department of Statistics, University of Wisconsin, 1983.
  • M.S. Bernardi, L.M. Sangalli, G. Mazza, and J.O. Ramsay, A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province, Stoch. Environ. Res. Risk Assess. 31(1) (2017), pp. 23–38.
  • M. Chung, J. Hanson, and S. Pollak, Statistical analysis on brain surfaces. Technical report, University of WisconsinMadison, 2014.
  • P. Craven and G. Wahba, Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31 (1978/79), pp. 377–403.
  • T.A. Davis, Algorithm 832: Umfpack v4.3 — an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30(2) (jun 2004), pp. 196–199. ISSN 0098-3500.. doi: 10.1145/992200.992206.
  • J.W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 7.3.0 manual: a high-level interactive language for numerical computations, (2022). Available at https://www.gnu.org/software/octave/doc/v7.3.0/.
  • B. Ettinger, S. Perotto, and L.M. Sangalli, Spatial regression models over two-dimensional manifolds, Biometrika 103(1) (2016), pp. 71–88.
  • R.L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed., CRC Press, 1999.
  • R.L. Eubank, C. Huang, Y.M. Maldonado, N. Wang, S. Wang, and R.J. Buchanan, Smoothing spline estimation in varying-coefficient models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 66(3) (2004), pp. 653–667.
  • F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, Vol. 76, Springer, 2006.
  • R.A. Fisher, Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population, Biometrika 10(4) (1915), pp. 507–521.
  • D.A. Girard, A fast 'Monte-Carlo cross-validation' procedure for large least squares problems, Numer. Math. 56(1) (1989), pp. 1–23.
  • M.F. Glasser, S.N. Sotiropoulos, J.A. Wilson, T.S. Coalson, B. Fischl, J.L. Andersson, J. Xu, S. Jbabdi, M. Webster, J.R. Polimeni, D.C. Van Essen, M. Jenkinson, and W.U.-Minn HCP Consortium, The minimal preprocessing pipelines for the human connectome project, NeuroImage 80 (2013), pp. 105–124.
  • G. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21(2) (1979), pp. 215–223.
  • G.H. Golub and U. von Matt, Generalized cross-validation for large-scale problems, J. Comput. Graph. Stat. 6(1) (1997), pp. 1–34.
  • P.J. Green and B.W. Silverman, Nonparametric Regression and Generalized Linear Models, 1stn ed., Chapman and Hall/CRC, 1993.
  • P.J. Green and B.W. Silverman, Nonparametric Regression and Generalized Linear Models, Volume 58 of Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1994. ISBN 0-412-30040-0. doi: 10.1007/978-1-4899-4473-3. A roughness penalty approach.
  • C. Gu, Cross-validating non-Gaussian data, J. Comput. Graph. Stat. 1(2) (1992), pp. 169–179.
  • T. Hastie and R. Tibshirani, Generalized Additive Models, Chapman Hall, 1990.
  • M.F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Commun. Stat. Simul. Comput. 18(3) (1989), pp. 1059–1076.
  • M.F. Hutchinson and F.R. de Hoog, Smoothing noisy data with spline functions, Numer. Math. 47(1) (1985), pp. 99–106.
  • M.F. Hutchinson and F.R. de Hoog, An efficient method for calculating smoothing splines using orthogonal transformations, Numer. Math. 50 (1986/87), pp. 311–319.
  • P. Kokoszka and M. Reimherr, Introduction to Functional Data Analysis, Chapman and Hall/CRC, 2017.
  • S. Konishi and G. Kitagawa, Information Criteria and Statistical Modeling, Springer Publishing Company, 2007.
  • M.-J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Volume 110 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2007. ISBN 978-0-521-87592-9; 0-521-87592-7. doi: 10.1017/CBO9780511721588.
  • M.-J. Lai and L. Wang, Bivariate penalized splines for regression, Stat. Sin. 23(3) (2013), pp. 1399–1417. ISSN 1017-0405.
  • S.-H. Lai and B.C. Vemuri, Sherman–Morrison–Woodbury-formula-based algorithms for the surface smoothing problem, Linear Algebra Appl. 265(1–3) (1997), pp. 203–229.
  • E. Lila, J.A.D. Aston, and L.M. Sangalli, Smooth principal component analysis over two-dimensional manifolds with an application to neuroimaging, Ann. Appl. Stat. 10(4) (2016), pp. 1854–1879.
  • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2021. Available at https://www.R-project.org/.
  • J.O. Ramsay and B.W. Silverman, Functional data analysis, (2008). Available at İnternet Adresi: http.
  • D. Ruppert, M.P. Wand, and R.J. Carroll, Semiparametric Regression, Vol. 12, Cambridge University Press, 2003.
  • Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, 2003. doi: 10.1137/1.9780898718003
  • Y. Saad and M.H. Schultz, Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7(3) (1986), pp. 856–869. doi: 10.1137/0907058
  • L.M. Sangalli, Spatial regression with partial differential equation regularization, Int. Stat. Rev. 89(3) (2021), pp. 505–531. doi: 10.1111/insr.12444
  • L. Sario, M. Nakai, C. Wang, and L.O. Chung, Classification Theory of Riemannian Manifolds, 1sted., Springer-Verlag, Berlin Heidelberg, 1977.
  • J. Sherman and W. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Stat. 21(1) (1950), pp. 124–127.
  • F. Utreras, Optimal smoothing of noisy data using spline functions, SIAM J. Sci. and Stat. Comput. 2(3) (1981), pp. 349–362.
  • H.A. van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13(2) (1992), pp. 631–644. doi: 10.1137/0913035
  • G. Wahba, Spline Models for Observational Data, Volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. ISBN 0-89871-244-0. doi: 10.1137/1.9781611970128.
  • Y. Wang, Smoothing Splines: Methods and Applications, Chapman and Hall/CRC, 2019.
  • L. Wang, G. Wang, M.-J. Lai, and L. Gao, Efficient estimation of partially linear models for spatial data over complex domains, Stat. Sin. 30 (2020), pp. 347–369.
  • M. Wilhelm and L.M. Sangalli, Generalized spatial regression with differential regularization, J. Stat. Comput. Simul. 86(13) (2016), pp. 2497–2518.
  • S.N. Wood, Modelling and smoothing parameter estimation with multiple quadratic penalties, J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 (2000), pp. 413–428.
  • S.N. Wood, Stable and efficient multiple smoothing parameter estimation for generalized additive models, J. Am. Stat. Assoc. 99 (2004), pp. 673–686.
  • S.N. Wood, Generalized Additive Models, Texts in Statistical Science Series, CRC Press, Boca Raton, FL, 2017. ISBN 978-1-4987-2833-1. An introduction with R.
  • S.N. Wood, M.V. Bravington, and S.L. Hedley, Soap film smoothing, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(5) (2008), pp. 931–955.
  • M.A. Woodbury, Inverting Modified Matrices, Memorandum Report 42, Statistical Research Group, Princeton University, Princeton, NJ, 1950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.