115
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A novel radial basis procedure for the SIRC epidemic delay differential model

, , &
Pages 2014-2025 | Received 23 Mar 2023, Accepted 23 Jul 2023, Published online: 29 Aug 2023

References

  • M. Umar, Z. Sabir, M.A.Z. Raja, M. Shoaib, M. Gupta, and Y.G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics. Symmetry (Basel) 12(10) (2020), p. 1628.
  • D.S. Hui, E.I. Azhar, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T.D. Mchugh, Z.A. Memish, C. Drosten, A. Zumla, and E. Petersen, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91 (2020), pp. 264–266.
  • A. Grifoni, D. Weiskopf, S.I. Ramirez, J. Mateus, J.M. Dan, C.R. Moderbacher, S.A. Rawlings, A. Sutherland, L. Premkumar, R.S. Jadi, D. Marrama, A.M. de Silva, A. Frazier, A.F. Carlin, J.A. Greenbaum, B. Peters, F. Krammer, D.M. Smith, S. Crotty, and A. Sette, Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181(7) (2020), pp. 1489–1501.e15.
  • C. Sohrabi, Z. Alsafi, N. O'neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, and R. Agha, World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76 (2020), pp. 71–76.
  • C. Gomes, Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Braz. J. Implantol. Health Sci. 2(3) (2020).
  • M. Umar, Z. Sabir, M.A.Z. Raja, F. Amin, T. Saeed, and Y. Guerrero-Sanchez, Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19. Alexandria Eng. J. 60(3) (2021), pp. 2811–2824.
  • R.M. Anderson, and R.M. May, Infectious Diseases of Humans: Dynamics and Control, University Press, Oxford, 1992.
  • W.H. Seto, D. Tsang, R.W.H. Yung, T.Y. Ching, T.K. Ng, M. Ho, L.M. Ho, J.S.M. Peiris, and Advisors of Expert SARS Group of Hospital Authority, Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 361(9368) (2003), pp. 1519–1520.
  • F.S. Al-Jasser, R.M. Nouh, and R.M. Youssef, Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014–2015. J. Infect. Public. Health 12(2) (2019), pp. 171–177.
  • J.O. Kahn, and B.D. Walker, Acute human immunodeficiency virus type 1 infection. N. Engl. J. Med. 339(1) (1998), pp. 33–39.
  • M. Umar, Z. Sabir, F. Amin, J.L. Guirao, and M.A.Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur. Phys. J. Plus 135(5) (2020), pp. 1–19.
  • M. Umar, Z. Sabir, M.A.Z. Raja, H.M. Baskonus, S.W. Yao, and E. Ilhan, A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells. Results Phys. 25 (2021), p. 104235.
  • Z. Sabir, T. Botmart, M.A.Z. Raja, W. weera, R. Sadat, M.R. Ali, A.A. Alsulami, and A. Alghamdi, Artificial neural network scheme to solve the nonlinear influenza disease model. Biomed. Signal. Process. Control 75 (2022), pp. 103594.
  • Z. Sabir, M. Umar, M.A.Z. Raja, I. Fathurrochman, and H. Hasan, Design of Morlet wavelet neural network to solve the non-linear influenza disease system. Appl. Math. Nonlinear Sci. (2022).
  • Y.G. Sánchez, Z. Sabir, and J.L. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19). Fractals. 28(8) (2020), p. 2040026.
  • C. Gomes, Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Braz. J. Implantol. Health Sci. 2(3) (2020).
  • A.S. Azman, K.E. Rudolph, D.A. Cummings, and J. Lessler, The incubation period of cholera: A systematic review. J. Infect. 66(5) (2013), pp. 432–438.
  • J. Lessler, N.G. Reich, R. Brookmeyer, T.M. Perl, K.E. Nelson, and D.A. Cummings, Incubation periods of acute respiratory viral infections: A systematic review. Lancet Infect. Dis. 9(5) (2009), pp. 291–300.
  • C. Wells, D. Yamin, M.L. Ndeffo-Mbah, N. Wenzel, S.G. Gaffney, J.P. Townsend, L.A. Meyers, M. Fallah, T.G. Nyenswah, F.L. Altice, K.E. Atkins, and A.P. Galvani, Harnessing case isolation and ring vaccination to control Ebola. PLoS. Negl. Trop. Dis. 9(5) (2015), p. e0003794.
  • R.M. Anderson, and R.M. May, Infectious Diseases of Humans: Dynamics and Control, University Press, Oxford, 1992.
  • A. Kashkynbayev, and D. Koptleuova, Global dynamics of tick-borne diseases. Math. Biosci. Eng. 17(4) (2020), pp. 4064–4079.
  • V. Capasso, Mathematical structures of epidemic systems. Lect. Notes. Biomath. 97 (1993).
  • A. Issanov, Y. Amanbek, A. Abbay, S. Adambekov, M. Aljofan, A. Kashkynbayev, and A. Gaipov, COVID-19 outbreak in post-soviet states: Modeling the best and worst possible scenarios. medRxiv 17(6) (2020).
  • R. Casagrandi, L. Bolzoni, S.A. Levin, and V. Andreasen, The SIRC model and influenza A. Math. Biosci. 200 (2006), pp. 152–169.
  • F.A. Rihan, D. Baleanu, S. Lakshmanan, and R. Rakkiyappan, On fractional SIRC model with Salmonella bacterial infection. Abs. Appl. Anal. 2014 (2014, April).
  • M.A. Khan, and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alexandria Eng. J. 59(4) (2020), pp. 2379–2389.
  • H. Hethcote, M. Zhien, and L. Shengbing, Effects of quarantine in six endemic models for infectious diseases. Math. Biosci. 180(1-2) (2002), pp. 141–160.
  • A. Lahrouz, and A. Settati, Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl. Math. Comput. 233 (2014), pp. 10–19.
  • Q. Liu, D. Jiang, T. Hayat, and A. Alsaedi, Dynamics of a stochastic tuberculosis model with antibiotic resistance. Chaos Solitons Fractals 109 (2018), pp. 223–230.
  • Q. Yang, and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations. Nonlinear Anal. Real World Appl. 14(3) (2013), pp. 1434–1456.
  • F. Wei, and R. Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence. Math. Comput. Simul. 170 (2020), pp. 1–15.
  • X. Mao, S. Sabanis, and E. Renshaw, Asymptotic behaviour of the stochastic Lotka–Volterra model. J. Math. Anal. Appl. 287(1) (2003), pp. 141–156.
  • X. Mao, C. Yuan, and J. Zou, Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 304(1) (2005), pp. 296–320.
  • A. Bahar, and X. Mao, Stochastic delay Lotka–Volterra model. J. Math. Anal. Appl. 292(2) (2004), pp. 364–380.
  • Y. Yuan, and L.J. Allen, Stochastic models for virus and immune system dynamics. Math. Biosci. 234(2) (2011), pp. 84–94.
  • C. Ji, The stationary distribution of hepatitis B virus with stochastic perturbation. Appl. Math. Lett. 100 (2020), p. 106017.
  • S. Lakshmi Priyadarsini, and M. Suresh, Factors influencing the epidemiological characteristics of pandemic COVID 19: A TISM approach. Int. J. Healthc. Manag. 13(2) (2020), pp. 89–98.
  • C. Ji, and D. Jiang, Threshold behaviour of a stochastic SIR model. Appl. Math. Model. 38(21-22) (2014), pp. 5067–5079.
  • Z. Sabir, H.A. Wahab, S. Javeed, and H.M. Baskonus, An efficient stochastic numerical computing framework for the nonlinear higher order singular models. Fractal Fract. 5(4) (2021), pp. 176.
  • Z. Sabir, M.A.Z. Raja, S.R. Mahmoud, M. Balubaid, A. Algarni, A.H. Alghtani, A.A. Aly, and D.-N. Le, A novel design of Morlet wavelet to solve the dynamics of nervous stomach nonlinear model. Int. J. Comput. Intell. Syst. 15(1) (2022), pp. 1–15.
  • K. Mukdasai, Z. Sabir, M.A.Z. Raja, R. Sadat, M.R. Ali, and P. Singkibud, A numerical simulation of the fractional order Leptospirosis model using the supervise neural network. Alexandria Eng. J. 61(12) (2022), pp. 12431–12441.
  • T. Botmart, Z. Sabir, M.A.Z. Raja, W. Weera, M.R. Ali, R. Sadat, A.A. Aly, and A. Saad, A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system. Biomed. Signal. Process. Control 77 (2022), p. 103789.
  • Z. Sabir, et al., An investigation through stochastic procedures for solving the fractional order computer virus propagation mathematical model with kill signals. Neural Process. Lett. (2022), pp. 1–15.
  • Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system. Int. J. Biomath. 15(04) (2022), pp. 2250005.
  • Z. Sabir, M.R. Ali, and R. Sadat, Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model. J. Ambient. Intell. Humaniz. Comput. (2022), pp. 1–10.
  • M. Umar, F. Amin, H.A. Wahab, and D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery. Appl. Soft. Comput. 85 (2019), p. 105826.
  • B. Wang, et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks. Fractals (2022), p. 2240147.
  • Z. Sabir, Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion. Eur. Phys. J. Plus 137(5) (2022), p. 638.
  • Z. Sabir, et al., Neuron analysis of the two-point singular boundary value problems arising in the thermal explosion’s theory. Neural Process. Lett. (2022), pp. 1–28.
  • F.A. Rihan, H.J. Alsakaji, and C. Rajivganthi, Dynamics analysis of a delayed virus model with two different transmission methods and treatments. Adv. Differ. Equ. 2020(1) (2020), pp. 1–20.
  • V.M. Pérez-García, S. Fitzpatrick, L.A. Pérez-Romasanta, M. Pesic, P. Schucht, E. Arana, and P. Sánchez-Gómez, Applied mathematics and nonlinear sciences in the war on cancer. Appl. Math. Nonlinear Sci. 1(2) (2016), pp. 423–436.
  • M. Dewasurendra, and K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer. Appl. Math. Nonlinear Sci. 3(1) (2018), pp. 1–14.
  • H.M. Baskonus, H. Bulut, and T.A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 4(1) (2019), pp. 129–138.
  • M.S.M. Selvi, and L. Rajendran, Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems. Appl. Math. Nonlinear Sci. 4(2) (2019), pp. 351–364.
  • E. İlhan, and İO Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 5(1) (2020), pp. 171–188.
  • A. Yokuş, and S. Gülbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl. Math. Nonlinear Sci. 4(1) (2019), pp. 35–42.
  • F. Rabah, M. Abukhaled, and S.A. Khuri, Solution of a complex nonlinear fractional biochemical reaction model. Math. Comput. Appl. 27(3) (2022), p. 45.
  • M. Azeem, M. Farman, M. Abukhaled, K.S. Nisar, and A. Akgül, Epidemiological analysis of human liver model with fractional operator. Fractals (2023), p. 2340047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.