147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The virtual element method for solving two-dimensional fractional cable equation on general polygonal meshes

, , &
Pages 2026-2046 | Received 10 Mar 2023, Accepted 23 Jul 2023, Published online: 30 Aug 2023

References

  • D. Adak, E. Natarajan, and S. Kumar, Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer. Methods. Partial. Differ. Equ. 35(1) (2019), pp. 222–245.
  • D. Adak, S. Natarajan, and E. Natarajan, Virtual element method for semilinear elliptic problems on polygonal meshes, Appl. Numer. Math. 145(2019), pp. 175–187.
  • B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66(3) (2013), pp. 376–391.
  • M. Badr, A. Yazdani, and H. Jafari, Stability of a finite volume element method for the time–fractional advection–diffusion equation, Numer. Methods. Partial. Differ. Equ. 34(5) (2018), pp. 1459–1471.
  • L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23(01) (2013), pp. 199–214.
  • L. Beirão da Veiga, F. Brezzi, L.D. Marini, and A. Russo, The Hitchhiker's guide to the virtual element method, Math. Models Methods Appl. Sci. 24(08) (2014), pp. 1541–1573.
  • F. Benedetto M, S. Berrone, A. Borio, S. Pieraccini, and S. Scialo, Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems, Comput. Methods. Appl. Mech. Eng. 311(2016), pp. 18–40.
  • E. Benvenuti, A. Chiozzi, G. Manzini, and N. Sukumar, Extended virtual element method for two-dimensional linear elastic fracture, Comput. Methods. Appl. Mech. Eng. 390(2022), pp. 114352.
  • J. Bisquert, Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk, Phys. Rev. Lett. 91(1) (2003), pp. 010602.
  • A. Bouharguane and N. Seloula, The local discontinuous Galerkin method for convection-diffusion-fractional anti-diffusion equations, Appl. Numer. Math. 148(2020), pp. 61–78.
  • F. Brezzi and L.D. Marini, Virtual element methods for plate bending problems, Comput. Methods. Appl. Mech. Eng. 253(2013), pp. 455–462.
  • A. Cangiani, P. Chatzipantelidis, G. Diwan, and E.H. Georgoulis, Virtual element method for quasilinear elliptic problems, IMA J. Numer. Anal. 40(4) (2020), pp. 2450–2472.
  • Y. Chen and J. Zhou, Error estimates of spectral Legendre–Galerkin methods for the fourth-order equation in one dimension, Appl. Math. Comput. 268(2015), pp. 1217–1226.
  • Y. Chen, Q. Gu, Q. Li, and Y. Huang, A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations, J. Comput. Math. 40(6) (2022a), pp. 936.
  • Y. Chen, Q. Li, H. Yi, and Y. Huang, Immersed finite element method for time fractional diffusion problems with discontinuous coefficients, Comput. Math. Appl. 128(2022b), pp. 121–129.
  • B.A. de Dios, K. Lipnikov, and G. Manzini, The nonconforming virtual element method, ESAIM: Math. Model. Numer. 50(3) (2016), pp. 879–904.
  • K. Diethelm, D. Baleanu, and E. Scalas, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012.
  • X. Gao, F. Liu, H. Li, Y. Liu, I. Turner, and B. Yin, A novel finite element method for the distributed-order time fractional cable equation in two dimensions, Comput. Math. Appl. 80(5) (2020), pp. 923–939.
  • Q. Gu, Y. Chen, and Y. Huang, Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations, Comput. Math. Appl. 41(8) (2022), pp. 361.
  • B.I. Henry, T.A.M. Langlands, and S.L. Wearne, Fractional cable models for spiny neuronal dendrites, Phys. Rev. Lett. 100(12) (2008), pp. 128103.
  • M.M. Izadkhah and J. Saberi-Nadjafi, Gegenbauer spectral method for time-fractional convection–diffusion equations with variable coefficients, Math. Methods. Appl. Sci. 38(15) (2015), pp. 3183–3194.
  • Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235(11) (2011), pp. 3285–3290.
  • B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM. J. Numer. Anal. 51(1) (2013), pp. 445–466.
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
  • T.A.M. Langlands, B.I. Henry, and S.L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions, J. Math. Biol. 59(6) (2009), pp. 761–808.
  • M. Li, Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger–Boussinesq equations, J. Sci. Comput. 93(3) (2022), pp. 86.
  • M. Li, L. Wang, and N. Wang, Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations, Appl. Numer. Math. 186(2023), pp. 378–410.
  • M. Li, J. Zhao, C. Huang, and S. Chen, Nonconforming virtual element method for the time fractional reaction–subdiffusion equation with non-smooth data, J. Sci. Comput. 81(3) (2019), pp. 1823–1859.
  • M. Li, J. Zhao, C. Huang, and S. Chen, Conforming and nonconforming VEMs for the fourth-order reaction–subdiffusion equation: a unified framework, IMA J. Numer. Anal. 42(3) (2022), pp. 2238–2300.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), pp. 1533–1552.
  • Y. Lin, X. Li, and C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comput. 80(275) (2011), pp. 1369–1396.
  • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation, Appl. Math. Comput. 191(1) (2007), pp. 12–20.
  • Y. Liu, Z. Fang, H. Li, and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput. 243(2014), pp. 703–717.
  • F. Liu, P. Zhuang, and Q. Liu, Numerical methods of fractional partial differential equations and applications (2015).
  • Y. Liu, Y.W. Du, H. Li, and J.F. Wang, A two-grid finite element approximation for a nonlinear time-fractional cable equation, Nonlinear. Dyn. 85(4) (2016), pp. 2535–2548.
  • J. Liu, H. Li, and Y. Liu, A new fully discrete finite difference/element approximation for fractional cable equation, J. Appl. Math. Comput. 52(1) (2016), pp. 345–361.
  • Y. Liu, Y. Du, H. Li, F Liu, and Y. Wang, Some second-order schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algorithms. 80(2) (2019), pp. 533–555.
  • J. Quintana-Murillo and S.B. Yuste, An explicit numerical method for the fractional cable equation, Int. J. Differ. Equ. 2011 (2011).
  • G. Vacca and L. Beirão da Veiga, Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods. Partial. Differ. Equ. 31(6) (2015), pp. 2110–2134.
  • L.B. Veiga, F. Brezzi, L.D. Marini, and A. Russo, Virtual Element Implementation for General Elliptic Equations Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Springer, Cham, 2016, pp. 39–71.
  • Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277(2014), pp. 1–15.
  • L. Wei, X. Zhang, and Y. He, Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations, Int. J. Numer. Methods Heat Fluid Flow 23(4) (2013), pp. 634–648.
  • L. Xiao, M. Zhou, and J. Zhao, The nonconforming virtual element method for semilinear elliptic problems, Appl. Math. Comput. 433(2022), pp. 127402.
  • B. Zhang and M. Feng, Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation, Appl. Math. Comput. 328(2018), pp. 1–25.
  • Y. Zhang and M. Feng, The virtual element method for the time fractional convection diffusion reaction equation with non-smooth data, Comput. Math. Appl. 110(2022a), pp. 1–18.
  • Y. Zhang and M. Feng, A mixed virtual element method for the time-fractional fourth-order subdiffusion equation, Numer. Algorithms. (2022b), pp. 1–21.
  • Y. Zhang and M. Feng, A local projection stabilization virtual element method for the time-fractional Burgers equation with high Reynolds numbers, Appl. Math. Comput. 436(0) (2023), pp. 127509.
  • Y. Zheng and Z. Zhao, The discontinuous Galerkin finite element method for fractional cable equation, Appl. Numer. Math. 115(2017), pp. 32–41.
  • J. Zhou, H. Li, and Z. Zhang, A posteriori error estimates of spectral approximations for second order partial differential equations in spherical geometries, J. Sci. Comput. 90(1) (2022), pp. 1–30.
  • J. Zhou, J. Zhang, and X. Xing, Galerkin spectral approximations for optimal control problems governed by the fourth order equation with an integral constraint on state, Comput. Math. Appl.72(10) (2016), pp. 2549–2561.
  • P. Zhu, S. Xie, and X. Wang, Nonsmooth data error estimates for FEM approximations of the time fractional cable equation, Appl. Numer. Math. 121(2017), pp. 170–184.
  • P. Zhuang, F. Liu, I. Turner, and V. Anh, Galerkin finite element method and error analysis for the fractional cable equation, Numer. Algorithms. 72(2) (2016), pp. 447–466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.