101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A fast compact finite difference scheme for the fourth-order diffusion-wave equation

, , &
Pages 170-193 | Received 04 Jul 2023, Accepted 15 Feb 2024, Published online: 01 Mar 2024

References

  • M. Abbaszadeh and M. Dehghan, An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate, Numer. Algorithms. 75 (2017), pp. 173–211.
  • R. Bagley and R. Calico, Fractional order state equations for the control of viscoelasticallydamped structures, J. Guid. Control Dyn. 14(2) (1991), pp. 304–311.
  • M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int. 13(5) (1967), pp. 529–539.
  • A. Cartea, Fractional diffusion models of option prices in markets with jumps, Phys. A: Stat. Mechan. Appl. 374(2) (2007), pp. 749–763.
  • H. Chen, D. Xu, J. Cao, and J. Zhou, A backward Euler alternating direction implicit difference scheme for the three-dimensional fractional evolution equation, Numer. Methods. Partial. Differ. Equ. 34(3) (2018), pp. 938–958.
  • H. Chen, D. Xu, and J. Zhou, A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math. 356 (2019), pp. 152–163.
  • M. Dehghan, M. Abbaszadeh, and W. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett. 73 (2017), pp. 120–127.
  • M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ. 26(2) (2010), pp. 448–479.
  • M. Dehghan, M. Safarpoor, and M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math. 290 (2015), pp. 174–195.
  • M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. Phys. Commun. 181(1) (2010), pp. 43–51.
  • X. Gu and S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys. 417 (2020), pp. 109576.
  • B. Guo, P. Pascual, M. Rodriguez, and L. Vázquez, Numerical solution of the sine-Gordon equation, Appl. Math. Comput. 18(1) (1986), pp. 1–14.
  • S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21(3) (2017), pp. 650–678.
  • B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM. J. Numer. Anal. 51(1) (2013), pp. 445–466.
  • R. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Phys. 51(2) (1984), pp. 299–307.
  • C. Li, H. Zhang, and X. Yang, A new α-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation, Commun. Anal. Mech. 16(1) (2024), pp. 147–168.
  • H. Liao and Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods. Partial. Differ. Equ. 26(1) (2010), pp. 37–60.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), pp. 1533–1552.
  • H. Moghaderi and M. Dehghan, A multigrid compact finite difference method for solving the one-dimensional nonlinear sine-Gordon equation, Math. Methods. Appl. Sci. 38(17) (2015), pp. 3901–3922.
  • K. Omrani, F. Abidi, T. Achouri, and N. Khiari, A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput. 201(1–2) (2008), pp. 35–43.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A: Stat. Mechan. Appl. 284(1–4) (2000), pp. 376–384.
  • J. Shen and X. Gu, Two finite difference methods based on an H 2N 2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete Contin. Dyn. Syst. Ser. B. 27(2) (2022), pp. 1179–1207.
  • J. Shen, C. Li, and Z. Sun, An H 2N 2 interpolation for Caputo derivative with order in (1, 2) and its application to time-fractional wave equations in more than one space dimension, J. Sci. Comput. 83(2) (2020), pp. 1–29.
  • Y. Shi and X. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation, Electron. Res. Arch. 32(3) (2024), pp. 1471–1497.
  • Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56(2) (2006), pp. 193–209.
  • Q. Tian, H. Zhang, X. Yang, and X. Jiang, An implicit difference scheme for the fourth-order nonlinear non-local PIDEs with a weakly singular kernel, Comput. Appl. Math. 41(7) (2022), pp. 328.
  • F. Wang, X. Yang, H. Zhang, and L. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simul. 199 (2022), pp. 38–59.
  • J. Wang, X. Jiang, X. Yang, and H. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput. 70(1) (2024), pp. 489–511.
  • J. Wang, X. Jiang, and H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett. 151 (2024), pp. 109002.
  • Z. Wang, X. Huang, and G. Shi, Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Comput. Math. Appl. 62(3) (2011), pp. 1531–1539.
  • L. Wu, H. Zhang, and X. Yang, The finite difference method for the fourth-order partial integro-differential equations with the multi-term weakly singular kernel, Math. Methods. Appl. Sci. 46(2) (2023), pp. 2517–2537.
  • L. Wu, H. Zhang, X. Yang, and F. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math. 41(7) (2022), pp. 313–1.
  • W. Xiao, X. Yang, and Z. Zhou, Pointwise-in-time α-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech. 16(1) (2024), pp. 53–70.
  • D. Xu, W. Qiu, and J. Guo, A compact finite difference scheme for the fourth-order time-fractional integro-differential equation with a weakly singular kernel, Numer. Methods. Partial. Differ. Equ. 36(2) (2020), pp. 439–458.
  • W. Xu and H. Sun, A fast second-order difference scheme for the space-time fractional equation, Numer. Methods. Partial. Differ. Equ. 35(4) (2019), pp. 1326–1342.
  • X. Yang, W. Qiu, H. Chen, and H. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math. 172 (2022), pp. 497–513.
  • X. Yang, W. Qiu, H. Zhang, and L. Tang, An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation, Comput. Math. Appl. 102 (2021), pp. 233–247.
  • X. Yang and H. Zhang, The uniform l1 long-time behavior of time discretization for time-fractional partial differential equations with nonsmooth data, Appl. Math. Lett. 124 (2022), pp. 107644.
  • X. Yang and Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett. 150 (2024), pp. 108972.
  • X. Yang, H. Zhang, and J. Tang, The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions, Comput. Math. Appl. 82 (2021), pp. 1–12.
  • X. Yang, H. Zhang, Q. Zhang, and G. Yuan, Simple positivity preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear. Dyn. 108 (2022), pp. 3859–3886.
  • X. Yang, H. Zhang, Q. Zhang, G. Yuan, and Z. Sheng, The finite volume scheme preserving maximum principle for two-dimensional time-fractional Fokker-Planck equations on distorted meshes, Appl. Math. Lett. 97 (2019), pp. 99–106.
  • Y. Yan and G. Fairweather, Orthogonal spline collocation methods for some partial integrodifferential equations, SIAM. J. Numer. Anal. 29(3) (1992), pp. 755–768.
  • F. Zeng and C. Li, A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation, Appl. Numer. Math. 121 (2017), pp. 82–95.
  • H. Zhang, X. Jiang, F. Wang, and X. Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Comput. Appl. Math. (2024) https://doi.org/10.1007/s12190-024-02000-y.
  • H. Zhang, X. Yang, and D. Xu, An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation, J. Sci. Comput. 85(1) (2020), pp. 7.
  • H. Zhang, X. Yang, and D. Xu, Unconditional convergence of linearized OSC algorithm for semilinear subdiffusion equation with non-smooth solution, Numer. Methods. Partial. Differ. Equ. 37(2) (2021), pp. 1361–1373.
  • Y. Zhao, X. Gu, and A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput. 88 (2021), pp. 11.
  • Z. Zhou, H. Zhang, and X. Yang, The compact difference scheme for the fourth-order nonlocal evolution equation with a weakly singular kernel, Math. Methods. Appl. Sci. 46(5) (2023), pp. 5422–5447.
  • Z. Zhou, H. Zhang, X. Yang, and J. Tang, An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions, Int. J. Comput. Math. 100(8) (2023), pp. 1719–17361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.