91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical analysis of singularly perturbed parabolic reaction diffusion differential difference equations

, , &
Pages 217-235 | Received 05 Oct 2023, Accepted 21 Jan 2024, Published online: 04 Mar 2024

References

  • G. Babu and K. Bansal, A high order robust numerical scheme for singularly perturbed delay parabolic convection diffusion problems, J. Appl. Math. Comput. 68(1) (2022), pp. 363–389.
  • G. Babu, M. Prithvi, K.K. Sharma, and V. Ramesh, A robust numerical algorithm on harmonic mesh for parabolic singularly perturbed convection-diffusion problems with time delay, Numer. Algorithms 91(2) (2022), pp. 615–634. Springer.
  • G. Babu, M. Prithvi, K.K. Sharma, and V. Ramesh, A uniformly convergent numerical algorithm on harmonic mesh for parabolic singularly perturbed convection-diffusion problems with boundary layer, Differ. Equ. Dyn. Syst. (2022), pp. 1–14. Springer.
  • K. Bansal and K.K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms75(1) (2017), pp. 113–145. Springer.
  • K. Bansal and K.K. Sharma, Parameter-robust numerical scheme for time dependent singularly perturbed reaction-diffusion problem with large delay, Numer. Funct. Anal. Optim. 39(2) (2018), pp. 127–154. Taylor and Francis.
  • K. Bansal and K.K. Sharma, ε-uniform numerical technique for the class of time dependent singularly perturbed parabolic problems with state dependent retarded argument arising from generalised stein's model of neuronal variability, Differ. Equ. Dyn. Syst. 27(1–3) (2019), pp. 113–140. Springer.
  • K. Bansal and K.K. Sharma, A high order robust numerical scheme for the generalised stein's model of neuronal variability, J. Differ. Equ. Appl. 27(5) (2021), pp. 637–663. Taylor & Francis.
  • K. Bansal, P. Rai, and K.K. Sharma, Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments, Differ. Equ. Dyn. Syst. 25(2) (2017), pp. 327–346. Springer.
  • C. Clavero, J.L. Gracia, G.I. Shishkin, and L.P. Shishkina, Schemes convergent ε-uniformly for parabolic singularly perturbed problems with a degenerating convective term and a discontinuous source, Math. Model. Anal. 20(5) (2015), pp. 641–657.
  • C. Clavero, J.C. Jorge, and F.J. Lisbona, A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems, J. Comput. Appl. Math. 154(2) (2003), pp. 415–429.
  • C. Clavero, R. Shiromani, and V. Shanthi, A numerical approach for a two-parameter singularly perturbed weakly-coupled system of 2-d elliptic convection–reaction–diffusion pdes, J. Comput. Appl. Math. 436 (2024), pp. 115422.
  • A. Das, L. Govindarao, and J. Mohapatra, A second order weighted monotone numerical scheme for time-delayed parabolic initial-boundary-value problem involving a small parameter, Int. J. Math. Model. Numer. Optim. 12(3) (2022), pp. 233–251.
  • L. Govindarao and A. Das, A second-order fractional step method for two-dimensional delay parabolic partial differential equations with a small parameter, Palest. J. Math. 11(3) (2022), pp. 96–111.
  • L. Govindarao, J. Mohapatra, and A. Das, A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics, J. Appl. Math. Comput. 63(1–2) (2020), pp. 171–195.
  • S. Gowrisankar and S. Natesan, A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems on equidistributed grids, Electron. Trans. Numer. Anal. 41 (2014), pp. 376–395.
  • J.L. Gracia, E. O'Riordan, and M.L. Pickett, A parameter robust second order numerical method for a singularly perturbed two-parameter problem, Appl. Numer. Math. 56(7) (2006), pp. 962–980.
  • M.K. Kadalbajoo and A. Awasthi, A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension, Appl. Math. Comput. 183(1) (2006), pp. 42–60.
  • M.K. Kadalbajoo, V. Gupta, and A. Awasthi, A uniformly convergent b-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection–diffusion problem, J. Comput. Appl. Math. 220(1–2) (2008), pp. 271–289.
  • A. Kaushik, Error estimates for a class of partial functional differential equation with small dissipation, Appl. Math. Comput. 226 (2014), pp. 250–257.
  • A. Kaushik, K.K. Sharma, and M. Sharma, A parameter uniform difference scheme for parabolic partial differential equation with a retarded argument, Appl. Math. Model. 34(12) (2010), pp. 4232–4242.
  • D. Kumar and M.K. Kadalbajoo, A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations, Appl. Math. Model. 35(6) (2011), pp. 2805–2819.
  • M. Kumar and S.C.S. Rao, High order parameter-robust numerical method for time dependent singularly perturbed reaction–diffusion problems, Computing 90(1–2) (2010), pp. 15–38.
  • T. Linß and N. Madden, Analysis of an alternating direction method applied to singularly perturbed reaction-diffusion problems, Int. J. Numer. Anal. Model. 7(3) (2010), pp. 507–519.
  • A. Majumdar and S. Natesan, Alternating direction numerical scheme for singularly perturbed 2d degenerate parabolic convection-diffusion problems, Appl. Math. Comput. 313 (2017), pp. 453–473.
  • A. Majumdar and S. Natesan, An epsilon uniform hybrid numerical scheme for a singularly perturbed degenerate parabolic convection-diffusion probem, Int. J. Comput. Math. 96(7) (2019), pp. 1313–1334.
  • R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994.
  • M. Musila and P. Lánsky, Generalized Stein's model for anatomically complex neurons, BioSystems 25(3) (1991), pp. 179–191.
  • P. Rai and S. Yadav, Robust numerical schemes for singularly perturbed delay parabolic convection-diffusion problems with degenerate coefficient, Int. J. Comput. Math. 98(1) (2021), pp. 195–221.
  • V.P. Ramesh and M.K. Kadalbajoo, Upwind and midpoint upwind difference methods for time-dependent differential-difference equations with layer behavior, Appl. Math. Comput. 202(2) (2008), pp. 453–471.
  • B.V. Rathish Kumar and S. Kumar, Convergence of three-step Taylor galerkin finite element scheme based monotone schwarz iterative method for singularly perturbed differential-difference equation, Numer. Funct. Anal. Optim. 36(8) (2015), pp. 1029–1045.
  • P.A. Selvi and N. Ramanujam, A parameter uniform difference scheme for singularly perturbed parabolic delay differential equation with robin type boundary condition, Appl. Math. Comput. 296 (2017), pp. 101–115.
  • R.B. Stein, A theoretical analysis of neuronal variability, Biophys. J. 5(2) (1965), pp. 173–194.
  • R.B. Stein, Some models of neuronal variability, Biophys. J. 7(1) (1967), pp. 37–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.