143
Views
0
CrossRef citations to date
0
Altmetric
Section B

A new second-order accurate time discretization method for the nonlinear cubic Schrödinger equation

Pages 2967-2997 | Received 26 Jul 2008, Accepted 27 Feb 2009, Published online: 29 Jul 2010

References

  • Ablowitz, M. J. , Herbst, B. M. , and Weideman, J. A.C. , 1991. Dynamics of semi-discretizations of the defocusing nonlinear Schrödinger equation , IMA J. Num. Anal. 11 (1991), pp. 539–552.
  • Ablowitz, M. J. , Herbst, B. M. , and Schober, C. M. , 2001. Discretizations, integrable systems and computation , J. Phys. A. 34 (2001), pp. 10671–10693.
  • Adomian, G. , 1994. Solving Frontiers Problems of Physics: The Decomposition Method . Boston, MA: Kluwer Academic Publishers; 1994.
  • Argyris, J. , and Haase, M. , 1987. An Engineer's guide to soliton phenomena: Application of the finite element method , Comp. Methods Appl. Mech. Eng. 61 (1987), pp. 71–122.
  • Atkinson, K. E. , 1989. An Introduction to Numerical Analysis . New York: J. Wiley; 1989.
  • Chen, J-B. , Qin, M-Z. , and Tang, Y-F. , 2002. Symplectic and Multi-Symplectic Methods for the Nonlinear Schrödinger Equation , Comput. Math. Appl. 43 (2002), pp. 1095–1106.
  • Clenshaw, C. W. , and Norton, H. , 1964. The solution of nonlinear ordinary differential equations in Chebyshev series , Comput. J. 6 (1964), pp. 88–92.
  • Delfour, M. , Fortin, M. , and Payre, G. , 1981. Finite-difference solutions of a non-linear Schrödinger equation , J. Comp. Phys. 44 (1981), pp. 277–288.
  • Dodd, R. K. , Eilbeck, J. C. , Gibbon, J. D. , and Morris, H. C. , 1982. Solitons and Nonlinear Wave Equations . London: Academic Press; 1982.
  • Duan, Q. , Li, S. , Bao, F. , and Twizell, E. H. , 2008. Hermite interpolation by piecewise rational surface , Appl. Math. Comp. 198 (2008), pp. 59–72.
  • Fan, E. G. , 2002. Travelling wave solutions for nonlinear equations using symbolic computation , Comput. Math. Appl. 43 (2002), pp. 671–680.
  • Fei, Z. , Pérez-García, V. M. , and Vázquez, L. , 1995. Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme , Appl. Math. Comp. 71 (1995), pp. 165–177.
  • Forsythe, G. E. , and Wasow, W. R. , 1960. Finite Difference Methods for Partial Differential Equations . New York: J. Wiley; 1960.
  • Fox, L. , and Parker, I. B. , 1968. Chebyshev Polynomials in Numerical Analysis . London: Oxford University Press; 1968.
  • Golub, G. H. , and Van Loan, C. F. , 1989. Matrix Computations . Baltimore and London: The Johns Hopkins University Press; 1989.
  • Griffiths, D. F. , Mitchell, A. R. , and Morris, J. L. , 1984. A numerical study of the nonlinear Schrödinger equation , Comput. Methods Appl. Mech. Eng. 45 (1984), pp. 177–215.
  • Hasegawa, A. , 1989. Optical Solitons in Fibers . Berlin: Springer-Verlag; 1989.
  • He, J-H. , 1999. Variational iteration method-a kind of non-linear analytical technique: Some examples , Int. J. Non-Linear Mech. 34 (1999), pp. 699–708.
  • Herbst, B. M. , Morris, J. LL. , and Mitchell, A. R. , 1985. Numerical experience with the nonlinear Schrödinger equation , J. Comp. Phys. 60 (1985), pp. 282–305.
  • Hopkins, T. R. , and Wait, R. , 1978. A comparison of Galerkin, collocation and the method of lines for partial differential equations , Int. J. Num. Methods Eng. 12 (1978), pp. 1081–1107.
  • Huntley, E. , 1986. Accurate finite difference approximations for the solution of parabolic partial differential equations by semi-discretization , Int. J. Num. Methods Eng. 23 (1986), pp. 2325–2346.
  • Keller, H. B. , 1990. Domain decomposition for two-point boundary value problems . Presented at 4th International Symposium DDMPDEs. Philadelphia, .
  • Kohl, R. , Biswas, A. , Milovic, D. , and Zerrad, E. , 2007. Perturbation of Gaussian optical solitons in dispersion-managed fibers , Appl. Math. Comp. 199 (2007), pp. 250–258.
  • Kong, L. , Liu, R. , and Zheng, X. , 2007. A survey on symplectic and multi-symplectic algorithms , Appl. Math. Comp. 186 (2007), pp. 670–684.
  • Korkmaz, A. , and Dag, I. , 2008. A differential quadrature algorithm for simulations of nonlinear Schrödinger equation , Comput. Math. Appl. 56 (2008), pp. 2222–2234.
  • Lamb, G. L. , 1980. Elements of Soliton Theory . New York: J. Wiley; 1980.
  • Lanczos, C. , 1956. Applied Analysis . Englewood Cliffs, NJ: Prentice-Hall; 1956.
  • Lanczos, C. , 1973. Miller, J. J. , ed. Legendre vs Chebyshev polynomials, in Topics in Numerical Analysis . New York: Academic Press; 1973. pp. 191–201.
  • Luke, Y. L. , 1969. The Special Functions and their Approximation . Vol. 1 and 2. New York: Academic Press; 1969.
  • Miles, J. W. , 1981. An envelope soliton problem , SIAM J. Appl. Math. 41 (2) (1981), pp. 227–230.
  • Mitchell, A. R. , and Morris, J. L. , 1983. A self adaptive difference scheme for the nonlinear Schrödinger equation , Arab Gulf J. Scient. Res. 1 (2) (1983), pp. 461–473.
  • Montesinos, G. D. , Pérez-García, V. M. , and Torres, P. J. , 2003. Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: Matter-wave breathers , Physica D 191 (2003), pp. 193–210.
  • Peleg, A. , and Chung, Y. , 2003. Stationary solutions to the nonlinear Schrödinger equation in the presence of third-order dispersion , J. Phys. A Math. Gen. 36 (2003), pp. 10039–10051.
  • Rektoris, K. , 1982. The Method of Discretization in Time and Partial Differential Equations . Dordrecht: Reidel; 1982.
  • Richtmyer, R. D. , and Morton, K. W. , 1967. Difference Methods for Initial Value Problems . New York: Interscience publishers; 1967.
  • Rivlin, T. J. , 1980. Wiley, J. , ed. Chebyshev Polynomials from Approximation Theory to Algebra and Number Theory . New York. 1980.
  • Röbler, A. , Seaid, M. , and Zahri, M. , 2007. Method of lines for stochastic boundary-value problems with additive noise , Appl. Maths. Comp. 199 (2007), pp. 301–314.
  • Samrout, Y. M. , 2007. New second-and fourth-order accurate numerical schemes for the nonlinear cubic Schrödinger equation , Inter. J. Comp. Maths. 84 (11) (2007), pp. 1625–1651.
  • Sanz-Serna, J. M. , and Verwer, J. G. , 1986. Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation , IMA. J. Num. Anal. 6 (1986), pp. 25–42.
  • Schiesser, W. E. , 1991. The Numerical Method of Lines. Integration of Partial Differential Equations . San Diego, CA: Academic Press; 1991.
  • Schober, C. M. , 1999. Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , Phys. Lett. A 259 (1999), pp. 140–151.
  • Soneson, J. , and Peleg, A. , 2004. Effect of quintic nonlinearity on soliton collisions in optical fibers , Physica D 195 (2004), pp. 123–140.
  • Strauss, W. A. , 1978. de la Penha, G. M. , and Medeiros, L. A. , eds. The nonlinear Schrödinger equation, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations . North-Holland, New York. 1978. pp. 452–465.
  • Sun, J-Q. , and Qin, M-Z. , 2003. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , Comput. Phys. Commun. 155 (2003), pp. 221–235.
  • Taha, T. R. , and Ablowitz, M. J. , 1984. Analytical and numerical aspects of certain nonlinear evolution equations: Numerical nonlinear Schrödinger equation , J. Comp. Phys. 55 (1984), pp. 203–230.
  • Tang, Y. F. , Vázquez, L. , Zhang, F. , and Pérez-García, V. M. , 1996. Symplectic methods for the nonlinear Schrödinger equation , Comput. Math. Appl. 32 (5) (1996), pp. 73–83.
  • Twizell, E. H. , Bratsos, A. G. , and Newby, J. C. , 1997. A finite-difference method for solving the cubic Schrödinger equation , Math. Comput. Simul. 43 (1) (1997), pp. 67–75.
  • Wazwaz, A. M. , 2007. A comparison between the variational iteration method and the Adomian decomposition method , J. Comp. Appl. Math. 207 (1) (2007), pp. 129–136.
  • Weideman, J. A.C. , and Herbst, B. M. , 1987. Recurrence in semi-discrete approximations of the nonlinear Schrödinger equation , SIAM J. Sci. Stat. Comp. 8 (1987), pp. 988–1004.
  • Whitham, G. B. , 1974. Linear and Nonlinear Waves . New York: J. Wiley; 1974.
  • Zakharov, V. E. , and Shabat, A. B. , 1972. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media , Soviet Phy. JETP 34 (1) (1972), pp. 62–69.
  • Zang, T. A. , 1984. Spectral multigrid methods for elliptic equations II , J. Comp. Phys. 54 (1984), pp. 489–507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.