142
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

On polynomial vector fields having a given affine variety as attractive and invariant set: application to robotics

&
Pages 1001-1025 | Received 17 Jul 2014, Accepted 22 Nov 2014, Published online: 12 Jan 2015

References

  • Aicardi, M., Casalino, G., Bicchi, A., & Balestrino, A. (1995). Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE Robotics & Automation Magazine, 2(1), 27–35.
  • Bayer, D., & Stillman, M. (1988). On the complexity of computing syzygies. Journal of Symbolic Computation, 6(2), 135–147.
  • Bohlin, R. (2002). Robot path planning (Unpublished doctoral dissertation). Göteborg: Chalmers University of Technology.
  • Brooks, R.A. (1983). Planning collision-free motions for pick-and-place operations. The International Journal of Robotics Research, 2(4), 19–44.
  • Brooks, R.A., & Lozano-Perez, T. (1985). A subdivision algorithm in configuration space for findpath with rotation. IEEE Transactions on Systems, Man and Cybernetics, 15(2), 224–233.
  • Buchberger, B. (2006). Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation, 41, 475–511.
  • Canny, J.F. (1988). The complexity of robot motion planning. ACM doctoral dissertation award. Cambridge, MA: MIT Press.
  • Canudas De Wit, C., Khennouf, H., Samson, C., & Sordalen, O. (1993). Nonlinear control design for mobile robots. Recent Trends in Mobile Robots, 11, 121–156.
  • Christopher, C., Llibre, J., Pantazi, C., & Walcher, S. (2009). Inverse problems for invariant algebraic curves: Explicit computations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 139(2), 287–302.
  • Conte, G., Longhi, S., & Zulli, R. (1996). Motion planning for unicycle and car-like robots. International Journal of Systems Science, 27(8), 791–798.
  • Cox, D., Little, J., & O’Shea, D. (1992). Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. Undergraduate texts in mathematics. New York, NY: Springer.
  • Cox, D.A., Little, J.B., & O’Shea, D. (1998). Using algebraic geometry. New York, NY: Springer.
  • Danilov, V.I., & Šokurov, V.V. (1998). Algebraic curves, algebraic manifolds, and schemes (Vol. 23). Heidelberg: Springer.
  • Fahimi, F., & Saffarian, M. (2011). The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar. International Journal of Control, 84(2), 242–252.
  • Gerke, M. (1999). Genetic path planning for mobile robots. In Proceedings of the 1999 American Control Conference (Vol. 4, pp. 2424–2429). San Diego, CA: IEEE.
  • Grayson, D.R., & Stillman, M.E. (2014). Macaulay2, a software system for research in algebraic geometry. Retrieved from http://www.math.uiuc.edu/Macaulay2/
  • Guruprasad, K., & Ghose, D. (2013). Heterogeneous locational optimisation using a generalised Voronoi partition. International Journal of Control, 86, 977–993.
  • Jean, F. (2001). Complexity of nonholonomic motion planning. International Journal of Control, 74, 776–782.
  • Khalil, H.K. (2002). Nonlinear systems (Vol. 3). Upper Saddle River, NJ: Prentice Hall.
  • Kotsios, S. (2011). A symbolic computational algorithm for designing feedback stabilizers of polynomial non-linear systems. IMA Journal of Mathematical Control and Information, 28(4), 463–474.
  • Kroumov, V., Yu, J., & Shibayama, K. (2010). 3d path planning for mobile robots using simulated annealing neural network. International Journal of Innovative Computing, Information and Control, 6(7), 2885–2899.
  • Li, G., Yamashita, A., Asama, H., & Tamura, Y. (2012). An efficient improved artificial potential field based regression search method for robot path planning. In 2012 International Conference on Mechatronics and Automation (ICMA) (pp. 1227–1232). Chengdu: IEEE.
  • Liu, Q., & Erné, R. (2002). Algebraic geometry and arithmetic curves (Vol. 6). Oxford: Oxford University Press.
  • Martinelli, F., Possieri, C., & Tornambe, A. (2014). Motion planning for a unicycle-like mobile robot, using algebraic attractive curves. In Med14–22nd Mediterranean Conference on Control and Automation (pp. 1335–1340). Palermo: IEEE.
  • Masehian, E., & Sedighizadeh, D. (2007). Classic and heuristic approaches in robot motion planning – a chronological review. World Academy of Science, Engineering and Technology, 23, 101–106.
  • Mayr, E.W., & Meyer, A.R. (1982). The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in Mathematics, 46(3), 305–329.
  • Menini, L., & Tornambè, A. (2011). Symmetries and semi-invariants in the analysis of nonlinear systems. London: Springer.
  • Menini, L., & Tornambè, A. (2013). On a Lyapunov equation for polynomial continuous-time systems. International Journal of Control, 87, 393–403.
  • Parillo, P.A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization (Unpublished doctoral dissertation). Pasadena, CA: California Institute of Technology.
  • Pathak, K., & Agrawal, S.K. (2005). An integrated path-planning and control approach for nonholonomic unicycles using switched local potentials. IEEE Transactions on Robotics, 21(6), 1201–1208.
  • Sedighi, K.H., Ashenayi, K., Manikas, T.W., Wainwright, R.L., & Tai, H.M. (2004). Autonomous local path planning for a mobile robot using a genetic algorithm. In Congress on Evolutionary Computation, 2004. CEC2004 (Vol. 2, pp. 1338–1345). Portland, OR: IEEE.
  • Siciliano, B., & Khatib, O. (2008). Springer handbook of robotics. Heidelberg: Springer.
  • Takahashi, O., & Schilling, R. (1989). Motion planning in a plane using generalized Voronoi diagrams. IEEE Transactions on Robotics and Automation, 5(2), 143–150.
  • Vidyasagar, M. (2002). Nonlinear systems analysis (Vol. 42). Philadelphia, PN: SIAM.
  • Yang, E., Gu, D., Mita, T., & Hu, H. (2004). Nonlinear tracking control of a car-like mobile robot via dynamic feedback linearization. Proceedings of Control. UK: University of Bath [ID-218].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.