240
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Optimal current waveforms for brushless permanent magnet motors

&
Pages 1389-1399 | Received 21 Jul 2014, Accepted 12 Jan 2015, Published online: 01 Apr 2015

References

  • Aghili, F., Buehler, M., & Hollerbach, J.M. (2001). Quadratic programming in control of brushless motors. In Proceedings of the 2001 IEEE International Conference on Robotics and Automation (vol. 2, pp. 1130–1135).
  • Aghili, F., Buehler, M., & Hollerbach, J.M. (2003). Experimental characterization and quadratic programming-based control of brushless-motors. IEEE Transactions on Control Systems Technology, 11(1), 139–146.
  • Baudart, F., Matagne, E., Dehez, B., & Labrique, F. (2013). Optimal current waveforms for torque control of permanent magnet synchronous machines with any number of phases in open circuit. Mathematics and Computers in Simulation, 90, 1–14.
  • Bolognani, S., Bolognani, S., Peretti, L., & Zigliotto, M. (2009). Design and implementation of model predictive control for electrical motor drives. IEEE Transactions on Industrial Electronics, 56(6), 1925–1936.
  • Bolognani, S., Kennel, R., Kuehl, S., & Paccagnella, G. (2011). Speed and current model predictive control of an IPM synchronous motor drive. In IEEE International Electric Machines & Drives Conference (pp. 1597–1602). IEEE.
  • Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.
  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
  • Chapman, P.L., Sudhoff, S.D., & Whitcomb, C.A. (1999). Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives. IEEE Transactions on Energy Conversion, 14(4), 1043–1050.
  • Chau, K.T., Chan, C.C., & Liu, C. (2008). Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Transactions on Industrial Electronics, 55(6), 2246–2257.
  • Chu, E., Parikh, N., Domahidi, A., & Boyd, S. (2013). Code generation for embedded second-order cone programming. In Proceedings of the 2013 European Control Conference (pp. 1547–1552).
  • Colby, R.S., & Novotny, D.W. (1988). An efficiency-optimizing permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications, 24(3), 462–469.
  • Davis, T.A. (2005). Algorithm 849: A concise sparse Cholesky factorization package. ACM Transactions on Mathematical Software, 31(4), 587–591.
  • Gabriel, R., Leonhard, W., & Nordby, C.J. (1980). Field-oriented control of a standard AC motor using microprocessors. IEEE Transactions on Industry Applications, 16(2), 186–192.
  • Geyer, T. (2011). Computationally efficient model predictive direct torque control. IEEE Transactions on Power Electronics, 26(10), 2804–2816.
  • Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent advances in learning and control, Lecture Notes in Control and Information Sciences (pp. 95–110). London: Springer-Verlag Limited.
  • Grant, M., & Boyd, S. (2013). CVX: Matlab software for disciplined convex programming [Online]. Retrieved from http://cvxr.com/cvx.
  • Hanselman, D. (1994). Minimum torque ripple, maximum efficiency excitation of brushless permanent magnet motors. IEEE Transactions on Industrial Electronics, 41(3), 292–300.
  • Hendershot, J.R., & Miller, T. (1994). Design of brushless permanent-magnet machines. Venice, FL: Motor Design Books.
  • Hung, J.Y., & Ding, Z. (1992). Minimization of torque ripple in permanent magnet motors: A closed form solution. In Proceedings of the 18th IEEE Industrial Electronics Conference (pp. 459–463). IEEE.
  • Jeong, Y., Sul, S., Hiti, S., & Rahman, K.M. (2006). Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications. IEEE Transactions on Industry Applications, 42(5), 1222–1229.
  • Le-Huy, H., Perret, R., & Feuillet, R. (1986). Minimization of torque ripple in brushless DC motor drives. IEEE Transactions on Industry Applications, 22(4), 748–755.
  • Lee, J., Nam, K., Choi, S., & Kwon, S. (2007). A lookup table based loss minimizing control for FCEV permanent magnet synchronous motors. In IEEE Vehicle Power and Propulsion Conference (pp. 175–179). IEEE.
  • Liu, Y., Zhu, Z.Q., & Howe, D. (2005). Direct torque control of brushless DC drives with reduced torque ripple. IEEE Transactions on Industry Applications, 41(2), 599–608.
  • Mariethoz, S., Domahidi, A., & Morari, M. (2009). Sensorless explicit model predictive control of permanent magnet synchronous motors. In IEEE International Electric Machines and Drives Conference (pp. 1250–1257). IEEE.
  • Mattingley, J., & Boyd, S. (2010). Automatic code generation for real-time convex optimization. In Y. Eldar & D. Palomar (Eds.), Convex optimization in signal processing and communications (pp. 1–41). Cambridge: Cambridge University Press.
  • Mattingley, J. & Boyd, S. (2012). CVXGEN: A code generator for embedded convex optimization. Optimization and Engineering, 13(1), 1–27.
  • Mattingley, J., Wang, Y., & Boyd, S. (2011). Receding horizon control: Automatic generation of high-speed solvers. IEEE Control Systems Magazine, 31(3), 52–65.
  • Morimoto, S., Tong, Y., Takeda, Y., & Hirasa, T. (1994). Loss minimization control of permanent magnet synchronous motor drives. IEEE Transactions on Industrial Electronics, 41(5), 511–517.
  • O’Donoghue, B., Stathopoulos, G., & Boyd, S. (2013). A splitting method for optimal control. IEEE Transactions on Control Systems Technology, 21(6), 2432–2442.
  • Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in Optimization, 1(3), 123–231.
  • Park, S.J., Park, H.W., Lee, M.H., & Harashima, F. (2000). A new approach for minimum-torque-ripple maximum-efficiency control of BLDC motor. IEEE Transactions on Industrial Electronics, 47(1), 109–114.
  • Stumper, J., Dötlinger, A., & Kennel, R. (2012). Classical model predictive control of a permanent magnet synchronous motor. European Power Electronics and Drives Journal, 22(3), 24–31.
  • Toh, K., Todd, M.J., & Tütüncü, R.H. (1999). SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optimization Methods and Software, 11(1–4), 545–581.
  • Tütüncü, R.H., Toh, K.C., & Todd, M.J. (2003). Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming, 95(2), 189–217.
  • Vaez, S., John, V.I., & Rahman, M.A. (1999). An on-line loss minimization controller for interior permanent magnet motor drives. IEEE Transactions on Energy Conversion, 14(4), 1435–1440.
  • Wang, L., Chai, S., Yoo, D., Gan, L., & Ng, K. (2014). PID and predictive control of electrical drives and power converters. Singapore: John Wiley and Sons.
  • Wang, Y., & Boyd, S. (2010). Fast model predictive control using online optimization. IEEE Transactions on Control Systems Technology, 18(2), 267–278.
  • Wu, A.P., & Chapman, P.L. (2005). Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives. IEEE Transactions on Energy Conversion, 20(1), 151–157.
  • Yang, Y., Wang, J., Wu, S., & Luh, Y. (2004). Design and control of axial-flux brushless DC wheel motors for electric vehicles—Part II: Optimal current waveforms and performance test. IEEE Transactions on Magnetics, 40(4), 1883–1891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.