317
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Controller–observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system

, , , , &
Pages 702-714 | Received 29 Jan 2016, Accepted 18 Jul 2016, Published online: 01 Sep 2016

References

  • Alcocer, W., Vela, L., Blanco, A., Gonzalez, J., & Oliver, M. (2012). Major trends in the development of ankle rehabilitation devices. Dyna, 79(176), 45–55.
  • Aström, K., & Murray, R. (2010). Feedback systems: An introduction for scientists and engineers. Princeton, NJ: Princeton University Press.
  • Atkeson, C.G., An, C.H., & Hollerbach, J.M. (1986). Estimation of inertial parameters of manipulator loads and links. The International Journal of Robotics Research, 5(3), 101–119.
  • Bejarano, N.C., Maggioni, S., De Rijcke, L., Cifuentes, C.A., & Reinkensmeyer, D.J. (2016). Robot-assisted rehabilitation therapy: Recovery mechanisms and their implications for machine design. In J.L. Pons, R. Raya, & J. González (Eds.), Proceedings of the Emerging Therapies in Neurorehabilitation II (pp. 197–223). Switzerland: Springer International Publishing.
  • Berghuis, H., Löhnberg, P., & Nijmeijer, H. (1991). Tracking control of robots using only position measurements. In Proceedings of the 30th IEEE Conference on Decision and Control (pp. 1039—1040). Brighton: IEEE.
  • Berghuis, H., & Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots. IEEE Transactions on Robotics and Automation, 9(6), 740–754.
  • Briot, S., & Gautier, M. (2015). Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody System Dynamics, 33(1), 3–26.
  • Canudas de Wit, C., & Fixot, N. (1991). Robot control via robust estimated state feedback. IEEE Transactions on Automatic Control, 36, 1497–1501.
  • Canudas de Wit, C., & Slotine, J.J.-E. (1991). Sliding observers for robot manipulators.Automatica, 27, 859–864.
  • Cao, J., Xie, S.Q., Das, R., & Zhu, G.L. (2014). Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Medical Engineering & Physics, 36(12), 1555–1566.
  • Carretero J.A., Podhorodeski, R.P., Nahon, M.A., & Gosselin, C.M. (2000). Kinematic analysis and optimization of a new three degree of freedom spatial parallel manipulator. ASME Journal of Mechanical Design, 122(1), 17–24.
  • Cazalilla, J.I., Valles, M., Mata, V., Diaz-Rodriguez, M., & Valera, A. (2014). Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models. Robotics and Computer-Integrated Manufacturing, 30(5), 468–477.
  • Cetinkunt, S. (2015). Mechatronics with experiments. Chichester: Wiley.
  • Codourey, A., & Burdet, E. (1997). A body-oriented method for finding a linear form of the dynamic equation of fully parallel robots. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 2, pp. 1612—1618). Alburquerque, NM: IEEE.
  • De Jalon, J.G., & Bayo, E. (1994). Kinematic and dynamic simulation of multibody systems: the real-time challenge. New York: Springer Verlag.
  • Díaz, I., Gil, J.J., & Sánchez, E. (2011). Lower-limb robotic rehabilitation: Literature review and challenges. Journal of Robotics, 2011, 1–11.
  • Díaz-Rodríguez, M., Iriarte, X., Mata, V., & Ros, J. (2009). On the experiment design for direct dynamic parameter identification of parallel robots. Advanced Robotics, 23(3), 329–348.
  • Díaz-Rodríguez, M., Mata, V., Valera, A., & Page, A. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337–1356.
  • Emken, J.L., Bobrow, J.E., & Reinkensmeyer, D.J. (2005). Robotic movement training as an optimization problem: Designing a controller that assists only as needed. In Proceedings of the 9th International Conference on Rehabilitation Robotics (pp. 307—312). Chicago: IEEE.
  • Farhat, N., Diaz, M.A., & Mata, V. (2007). Dynamic parameter identification of parallel robots considering physical feasibility and nonlinear friction models. In J.-P. Merlet & M. Dahan (Eds.), Proceedings of the 12th IFToMM World Congress. (pp. 18–21). Beçanson: IFToMM.
  • Ferreira, C., Reis, L.P., & Santos, C.P. (2016). Review of control strategies for lower limb prostheses. In L.P. Reis, A.P. Moreira, P.U. Lima, L. Montano, & V. Muũoz-Martinez (Eds.), Proceedings of the Second Iberian Robotics Conference (pp. 209—220). Lisbon: Springer International Publishing.
  • Gautier, M. (1991). Numerical calculation of the base inertial parameters of robots. Journal of Robotic Systems, 8(4), 485–506.
  • Gautier, M., & Khalil, W. (1988). On the identification of the inertial parameters of robots. In Proceedings of the 27th IEEE Conference on Decision and Control (pp. 2264–2269). Austin: IEEE.
  • Gautier, M., Khalil, W., & Restrepo, P.P. (1995). Identification of the dynamic parameters of a closed loop robot. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 3, pp. 3045–3050). Nagoya: IEEE.
  • Jamwal, P.K., Hussain, S., & Xie, S.Q. (2015). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93–101.
  • Janabi-Sharifi, F., Hayward, V., & Chen, C.-S.J. (2000). Discrete-time adaptive windowing for velocity estimation. IEEE Transactions on Control Systems Technology, 8(6), 1003–1009.
  • Janot, A., Gautier, M., Jubien, A., & Vandanjon, P.O. (2014). Comparison between the CLOE method and the DIDIM method for robots identification. IEEE Transactions on Control Systems Technology, 22(5), 1935–1941.
  • Janot, A., Vandanjon, P.O., & Gautier, M. (2016). A revised Durbin–Wu–Hausman test for industrial robot identification. Control Engineering Practice, 48, 52–62.
  • Jimenez-Fabian, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4), 397–408.
  • Khalil, W., Vijayalingam, A., Khomutenko, B., Mukhanov, I., Lemoine, P., & Ecorchard, G. (2014). OpenSYMORO: An open-source software package for Symbolic Modelling of Robots. In Proceedings of the 2014 IEEE/ASME International Conference in Advanced Intelligent Mechatronics (pp. 1206–1211). Besancon: IEEE.
  • Klafter, R.D., Chmielewski, T.A., & Negin, M. (1989). Robotics engineering – an integrated approach. Englewood Cliffs, NJ: Prentice-Hall.
  • Kwakernaak, H., & Sivan, R. (1972). Linear optimal control systems. New York, NY: Wiley.
  • Marchal-Crespo, L., & Reinkensmeyer, D.J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation, 6(1), 20.
  • Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., & Xie, S.S. (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132–145.
  • Page, A., Candelas, P., & Belmar, F. (2006). On the use of local fitting techniques for the analysis of physical dynamic systems. European Journal of Physics, 27(2), 273–279.
  • Pham, C.M., & Gautier, M. (1991). Essential parameters of robots. In Proceedings of the 30th IEEE Conference on Decision and Control (pp. 2769–2774). Brighton: IEEE.
  • Raibert, H., & Craig, J.J. (1981). Hybrid position/force control of manipulators, Journal of Dynamic Systems, Measurement, and Control, 102, 126–133.
  • Ramsay, J.O., & Silverman, B.W. (2005). Functional data analysis. New York: Springer.
  • Saglia, J.A., Tsagarakis, N.G., Dai, J.S., & Caldwell, D.G. (2013). Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Transactions on Mechatronics, 18(6), 1799–1808.
  • Stan, S.D., Balan, R., Maties, V., & Rad, C. (2009). Kinematics and fuzzy control of ISOGLIDE3 medical parallel robot. Mechanika, 1(75), 62–66.
  • Vallés, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & Díaz-Rodríguez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: Towards a low-cost robotic rehabilitation. Robotica, 1–19.
  • Vallés, M., Cazalilla, J.I., Valera, Á., Mata, V., & Page, Á. (2013). Dynamic controllers implementation based on the OROCOS middleware. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(1), 96–103.
  • Vallés, M., Díaz-Rodríguez, M., Valera, A., Mata, V., & Page, A. (2012). Mechatronic development and dynamic control of a 3-DOF parallel manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434–452.
  • Wu, F.X., Zhang, W.J., Li, Q., & Ouyang, P.R. (2002). Integrated design and PD control of high-speed closed—loop mechanisms. Journal Dynamics Measurements and Control, 124(4), 522–528.
  • Yang, C., Huang, Q., & Han, J. (2012). Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot. Robotics and Computer-Integrated Manufacturing, 28(1), 14–23.
  • Yoon, J., Ryu, J., & Lim, K.B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(1), 15–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.