289
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

An SOS method for the design of continuous and discontinuous differentiators

ORCID Icon, &
Pages 2597-2614 | Received 15 Apr 2016, Accepted 26 Sep 2017, Published online: 10 Nov 2017

References

  • Ahmadi, A. A. , & Parrilo, P. A. (2011). Converse results on existence of sum of squares Lyapunov functions. In 2011 50th IEEE conference on decision and control and European control conference (pp. 6516–6521). Orlando, FL.
  • Andrieu, V. , Praly, L. , & Astolfi, A. (2008). Homogeneous approximation, recursive observer design and output feedback. SIAM Journal on Control and Optimization (SICON), 47 (4), 1814–1850.
  • Aubin, J.-P. , & Frankowska, H. (2009). Set-valued analysis . Boston, MA: Birkhäuser. ( Reprint of the 1990 edition.)
  • Bacciotti, A. , & Rosier, L. (2005). Communications and control engineering. Liapunov functions and stability in control theory (2nd ed.). Berlin: Springer.
  • Bartolini, G. , Pisano, A. , & Usai, E. (2000). First and second derivative estimation by sliding mode technique. Journal of Signal Processing, 4 (2), 167–176.
  • Bejarano, F. J. , & Fridman, L. (2010). High order sliding mode observer for linear systems with unbounded unknown inputs. International Journal of Control, 83 (9), 1920–1929.
  • Bernuau, E. , Efimov, D. , Perruquetti, W. , & Polyakov, A. (2014). On homogeneity and its application in sliding mode control. Journal of The Franklin Institute, 351 (4), 1866–1901.
  • Bernuau, E. , Polyakov, A. , Efimov, D. , & Perruquetti, W. (2013). Verification of ISS, iISS and IOSS properties applying weighted homogeneity. Systems & Control Letters, 62 (12), 1159–1167.
  • Bhat, S. P. , & Bernstein, D. S. (1997). Finite-time stability of homogeneous systems. In Proceedings of the 1997 American control conference, 1997 (Vol. 4, pp. 2513–2514).
  • Bhat, S. P. , & Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38 (3), 751–766.
  • Bhat, S. P. , & Bernstein, D. S. (2005). Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals and Systems, 17 (2), 101–127.
  • Blekherman, G. , Parrilo, P. , & Thomas, R. (2012). Semidefinite optimization and convex algebraic geometry . Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Clarke, F. H. , Ledyaev, Y. S. , & Stern, R. J. (1998). Asymptotic stability and smooth Lyapunov functions. Journal of Differential Equations, 149 (1), 69–114.
  • Cruz-Zavala, E. , & Moreno, J. A. (2016). Lyapunov Functions for Continuous and Discontinuous Differentiators. IFAC-PapersOnLine. , 49(18), 660–665.
  • Davila, J. , Fridman, L. , & Levant, A. (2005). Second-order sliding-mode observer for mechanical systems. IEEE Transactions on Automatic Control, 50 (11), 1785–1789.
  • Deimling, K. (1992). Multivalued differential equations . Berlin: Walter de Gruyter.
  • Efimov, D. , & Fridman, L. (2011). A hybrid robust non-homogeneous finite-time differentiator. IEEE Transactions on Automatic Control, 56 , 1213–1219.
  • Filippov, A. F. (1988). Differential equations with discontinuous right–hand side . Dordrecht: Kluwer.
  • Floquet, T. , & Barbot, J. P. (2007). Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs. International Journal of Systems Science, 38 (10), 803–815.
  • Grüne, L. (2000). Homogeneous state feedback stabilization of homogenous systems. SIAM Journal on Control and Optimization, 38 (4), 1288–1308.
  • Hahn, W. (1967). Stability of motion . Berlin: Springer.
  • Hardy, G. H. , Littlewood, J. E. , & Pólya, G. (1988). Inequalities (2nd ed.). New York: Cambridge Mathematical Library.
  • Hermes, H. (1991). Homogeneus coordinates and continuous asymptotically stabilizing feedback controls. In S. Elaydi (Ed.), Lecture notes in pure and applied mathematics: Vol. 127. Differential equations, stability and control (pp. 249–260). New York, NY: Marcel Dekker.
  • Hestenes, M. (1966). Calculus of variations and optimal control theory . New York: Wiley.
  • Khalil, H. K. , & Praly, L. (2014). High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 24 , 993–1015.
  • Kobayashi, S. , Suzuki, S. , & Furuta, K. (2007). Frequency characteristics of Levant's differentiator and adaptive sliding mode differentiator. International Journal of Systems Science, 38 (10), 825–832.
  • Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58 (6), 1247–1263.
  • Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica, 34 (3), 379–384.
  • Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76 (6), 924–941.
  • Levant, A. (2005). Homogeneity approach to high-order sliding mode design. Automatica, 41 , 823–830.
  • Marshall, M. (2008). Positive polynomials and sums of squares . Mathematical surveys and monographs: Vol. 146 . Rhode Island: American Mathematical Society.
  • Moreno, J. A. (2012). A Lyapunov approach to output feedback control using second–order sliding modes. IMA Journal of Mathematical Control and Information , 29(3), 291–308.
  • Moreno, J. A. , & Osorio, M. (2008). A Lyapunov approach to second-order sliding mode controllers and observers. 47th IEEE conference on decision and control (pp. 2856–2861). Cancun, Mexico.
  • Moreno, J. A. , & Osorio, M. (2012). Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57 (4), 1035–1040.
  • Moulay, E. , & Perruquetti, W. (2006). Finite-time stability and stabilization: State of the art (pp. 23–41). Berlin: Springer.
  • Nakamura, H. , Yamashita, Y. , & Nishitani, H. (2002). Smooth Lyapunov functions for homogeneous differential inclusions. In Proceedings of the 41st SICE annual conference (Vol. 3, pp. 1974–1979). Osaka, Japan: IEEE.
  • Orlov, Y. (2003). Finite time stability of homogeneous switched systems. In Proceedings of 42nd IEEE conference on decision and control, 2003 (Vol. 4, pp. 4271–4276). Maui, HI: IEEE.
  • Parrilo, P. A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization . Pasadena: California Institute of Technology.
  • Parrilo, P. A. (2003). Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, 96 (2), 293–320.
  • Perruquetti, W. , Floquet, T. , & Moulay, E. (2008). Finite-time observers: Application to secure communication. IEEE Transactions on Automatic Control, 53 (2), 356–360.
  • Pólya, G. (1928). Über positive darstellung von polynomen. Vierteljahrschrift Naturforschenden Ges [On the positive representation of polynomials], 73 , 141–145.
  • Polyakov, A. , & Poznyak, A. (2009). Reaching time estimation for “super-twisting” second order sliding mode controller via Lyapunov function designing. IEEE Transactions on Automatic Control, 54 , 1951–1955.
  • Prajna, S. , Papachristodoulou, A. , & Parrilo, P. A. (2002–2005). SOSTOOLS: Sum of squares optimization toolbox for MATLAB . Retrieved from www.cds.caltech.edu/sostools and www.mit.edu/∼parrilo/sostools
  • Prasov, A. A. , & Khalil, H. K. (2013). A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Transactions on Automatic Control, 58 , 569–580.
  • Qian, C. , & Lin, W. (2006). Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 51 (9), 1457–1471.
  • Reznick, B. (2000). Some concrete aspects of Hilbert's 17th problem (Vol. 253, pp. 251–272). Providence, RI: American Mathematical Society.
  • Rosier, L. (1992a). Homogeneous Lyapunov function for homogeneous continuous vector field. Systems & Control Letters, 19 (6), 467–473.
  • Rosier, L. (1992b). Inverse of Lyapunov's second theorem for measurable functions. In Proceedings of IFAC-NOLCOS (pp. 655–660). Bordeaux, France: Elsevier.
  • Sanchez, T. , & Moreno, J. A. (2014). A constructive Lyapunov function design method for a class of homogeneous systems. In IEEE 53rd annual conference on decision and control (CDC) (pp. 5500–5505). Los Angeles, CA: IEEE.
  • Scheiderer, C. (2012). A Positivstellensatz for projective real varieties. Manuscripta Mathematica, 138 (1), 73–88.
  • Sepulchre, R. , & Aeyels, D. (1996). Homogeneous Lyapunov functions and necessary conditions for stabilization. Mathematics of Control, Signals and Systems, 9 (1), 34–58.
  • Shtessel, Y. B. , & Shkolnikov, I. A. (2003). Aeronautical and space vehicle control in dynamic sliding manifolds. International Journal of Control, 76 (9/10), 1000–1017.
  • Tian, W. , Qian, C. , & Frye, M. T. (2011). Finite-time convergent observer for a class of nonlinear systems using homogeneous method. In Proceedings of the 2011 American control conference (pp. 2572–2577). San Francisco, CA: IEEE.
  • Utkin, V. (1992). Sliding modes in control and optimization . Berlin: Springer-Verlag.
  • Vandenberghe, L. , & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38 (1), 49–95.
  • Vasiljevic, L. K. , & Khalil, H. K. (2008). Error bounds in differentiation of noisy signals by high-gain observers. Systems and Control Letters, 57 , 856–862.
  • Yang, B. , & Lin, W. (2004). Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Transactions on Automatic Control, 49 (7), 1069–1080.
  • Zubov, V. I. (1964). Methods of A. M. Lyapunov and their application . Groningen: P. Noordhoff.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.