207
Views
3
CrossRef citations to date
0
Altmetric
Articles

Optimal input design for system identification using spectral decomposition

, &
Pages 980-992 | Received 09 Sep 2017, Accepted 04 Jul 2018, Published online: 24 Jul 2018

References

  • Agüero, J. C., Rojas, C. R., & Goodwin, G. C. (2009). Fundamental limitations on the accuracy of mimo linear models obtained by pem for systems operating in open loop. Proceedings of the joint 48th ieee conference on decision and control (cdc 09) and 28th Chinese control conference (ccc 09) (pp. 482–487), Shanghai.
  • Alberer, D., Hjalmarsson, H., & Del Re, L. (2011). Identification for automotive systems (Vol. 418). London: Springer Science & Business Media.
  • Annergren, M., Larsson, C. A., Hjalmarsson, H., Bombois, X., & Wahlberg, B. (2017). Application-oriented input design in system identification: Optimal input design for control [applications of control]. IEEE Control Systems, 37(2), 31–56.
  • Aoki, M., & Staley, R. M. (1970). On input signal synthesis in parameter identification. Automatica, 6(3), 431–440.
  • Barenthin, M., Bombois, X., Hjalmarsson, H., & Scorletti, G. (2008). Identification for control of multivariable systems: Controller validation and experiment design via lmis. Automatica, 44(12), 3070–3078.
  • Beck, A. (2009). Convexity properties associated with nonconvex quadratic matrix functions and applications to quadratic programming. Journal of Optimization Theory and Applications, 142(1), 1–29.
  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press.
  • Cheng, C. S. (1980). On the e-optimality of some block designs. Journal of the Royal Statistical Society. Series B (Methodological), 42, 199–204.
  • Constantine, G. M. (1981). Some e-optimal block designs. The Annals of Statistics, 9, 886–892.
  • Dymarsky, A. (2014). On the convexity of image of a multidimensional quadratic map. arXiv preprint arXiv:1410.2254.
  • Fang, H., Depcik, C., & Lvovich, V. (2018). Optimal pulse-modulated lithium-ion battery charging: Algorithms and simulation. Journal of Energy Storage, 15, 359–367.
  • Fleming, A. J., & Leang, K. K. (2014). Design, modeling and control of nanopositioning systems. London: Springer.
  • Gerencsér, L., Hjalmarsson, H., & Huang, L. (2017). Adaptive input design for lti systems. IEEE Transactions on Automatic Control, 62(5), 2390–2405.
  • Goodwin, G. C., & Payne, R. L. (1977). Dynamic system identification: Experiment design and data analysis (Vol. 26). New York, NY: Academic Press.
  • Grant, M., Boyd, S., & Ye, Y. (2008). Cvx: Matlab software for disciplined convex programming, version 2.0 beta, Sept. 2012. Available on-line at http://cvxr.com/cvx
  • Hiriart-Urruty, J. B., & Torki, M. (2002). Permanently going back and forth between the ‘quadratic world’ and the ‘convexity world’ in optimization. Applied Mathematics & Optimization, 45(2), 169–184.
  • Jansson, H., & Hjalmarsson, H. (2005). Input design via lmis admitting frequency-wise model specifications in confidence regions. IEEE Transactions on Automatic Control, 50(10), 1534–1549.
  • Kay, S. M. (1993). Fundamentals of statistical signal processing, volume I: Estimation theory (v. 1). Upper Saddle River, NJ: Prentice Hall.
  • Konno, H. (1976). Maximization of a convex quadratic function under linear constraints. Mathematical Programming, 11(1), 117–127.
  • Kumar, A., Nabil, M., & Narasimhan, S. (2015). Economical input design for identification of multivariate systems. IFAC-PapersOnLine, 48(28), 1313–1318.
  • Ljung, L., Hjalmarsson, H., & Ohlsson, H. (2011). Four encounters with system identification. European Journal of Control, 17(5–6), 449–471.
  • Manchester, I. (2009). An algorithm for amplitude-constrained input design for system identification. Proceedings of the 48th ieee conference on Decision and control, 2009 held jointly with the 28th Chinese control conference. cdc/ccc 2009 (pp. 1551–1556), Shanghai.
  • Martín, C. A., Hekler, E. B., Deshpande, S., & Rivera, D. E. (2015). A system identification approach for improving behavioral interventions based on social cognitive theory. Proceedings of American Control Conference, Chicago.
  • Mehra, R. K. (1974). Optimal input signals for parameter estimation in dynamic systems – survey and new results. IEEE Transactions on Automatic Control, 19(6), 753–768.
  • Nahi, N., & DE Wallis, J. (1969). Optimal inputs for parameter estimation in dynamic systems with white observation noise. Joint Automatic Control Conference, Boulder.
  • Nair, M. T. (2001). Functional analysis: A first course. New Delhi: PHI Learning Pvt.
  • Polyak, B. T. (1998). Convexity of quadratic transformations and its use in control and optimization. Journal of Optimization Theory and Applications, 99(3), 553–583.
  • Preumont, A., & Seto, K. (2008). Active control of structures. Oxford: John Wiley & Sons.
  • Ramana, M., & Goldman, A. (1994). Quadratic maps with convex images. Rutgers University, Rutgers Center for Operations Research [RUTCOR].
  • Rantzer, A. (1996). On the Kalman–Yakubovich–Popov lemma. Systems & Control Letters, 28(1), 7–10.
  • Rensfelt, A., & Söderström, T. (2006). Optimal excitation for nonparametric identification of viscoelastic materials (Tech. Rep.). Citeseer.
  • Rensfelt, A., & Soderstrom, T. (2011). Optimal excitation for nonparametric identification of viscoelastic materials. IEEE transactions on Control Systems Technology, 19(1), 238–244.
  • Rojas, C. R., Welsh, J. S., Goodwin, G. C., & Feuer, A. (2007). Robust optimal experiment design for system identification. Automatica, 43(6), 993–1008.
  • Sanchez, B., Rojas, C. R., Vandersteen, G., Bragos, R., & Schoukens, J. (2012). On the calculation of the d-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements. Measurement Science and Technology, 23(8), 085702.
  • Sheriff, J. L. (2013). The convexity of quadratic maps and the controllability of coupled systems (Unpublished doctoral dissertation).
  • Söderström, T., & Stoica, P. (1988). System identification. Upper Saddle River, NJ: Prentice-Hall.
  • Söderström, T., & Stoica, P. (1989). System identification. Upper Saddle River, NJ: Prentice-Hall International.
  • Söderström, T., & Stoica, P. (2002). Instrumental variable methods for system identification. Circuits, Systems and Signal Processing, 21(1), 1–9.
  • Srivastava, J., & Anderson, D. (1974). A comparison of the determinant, maximum root, and trace optimality criteria. Communications in Statistics-Theory and Methods, 3(10), 933–940.
  • Stoica, P., & Moses, R. L. (2005). Spectral analysis of signals. Upper Saddle River, NJ: Pearson/Prentice Hall.
  • Wilson, G. T. (1972). The factorization of matricial spectral densities. SIAM Journal on Applied Mathematics, 23(4), 420–426.
  • Yong, Y. K., Aphale, S. S., & Moheimani, S. R. (2009). Design, identification, and control of a flexure-based xy stage for fast nanoscale positioning. IEEE Transactions on Nanotechnology, 8(1), 46–54.
  • Young, P., & Jakeman, A. (1980). Refined instrumental variable methods of recursive time-series analysis part iii. Extensions. International Journal of Control, 31(4), 741–764.
  • Zarrop, M., & Goodwin, G. (1975). Comments on ‘optimal inputs for system identification’. IEEE Transactions on Automatic Control, 20(2), 299–300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.