578
Views
10
CrossRef citations to date
0
Altmetric
Articles

A trajectory planning and tracking control approach for obstacle avoidance of wheeled inverted pendulum vehicles

, , &
Pages 1735-1744 | Received 14 Nov 2017, Accepted 25 Sep 2018, Published online: 10 Oct 2018

References

  • Chen, H. D., Chang, K. C., & Agate, C. S. (2013). UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Transactions on Aerospace and Electronic Systems, 49(2), 840–856. doi: 10.1109/TAES.2013.6494384
  • Cui, R. X., Guo, J., & Mao, Z. Y. (2015). Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dynamics, 79(1), 501–511. doi: 10.1007/s11071-014-1682-9
  • Do, K. D., Jiang, Z. P., & Pan, J. (2003). Robust global stabilization of underactuated ships on a linear course: State and output feedback. International Journal of Control, 76(1), 1–17. doi: 10.1080/0020717021000048233
  • Do, K. D., & Seet, G. (2010). Motion control of a two-wheeled mobile vehicle with an inverted pendulum. Journal of Intelligent and Robotic Systems, 60(3–4), 577–605. doi: 10.1007/s10846-010-9432-9
  • Feng, Y., Yu, X. H., & Man, Z. Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12), 2159–2167. doi: 10.1016/S0005-1098(02)00147-4
  • Grasser, F., D'Arrigo, A., Colombi, S., & Rufer, A. C. (2002). JOE: A mobile, inverted pendulum. IEEE Transactions on Industrial Electronics, 49(1), 107–114. doi: 10.1109/41.982254
  • Guo, L., Ge, S. P., Yue, M., & Zhao, Y. B. (2014). Lane changing trajectory planning and tracking controller design for intelligent vehicle running on curved road. Mathematical Problems in Engineering, 2014, 478573.
  • Guo, Z. Q., Xu, J. X., & Lee, T. H. (2014). Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum. Journal of the Franklin Institute, 351(4), 2261–2282. doi: 10.1016/j.jfranklin.2013.02.002
  • He, W., Li, Z. J., & Chen, C. P. (2017). A survey of human-centered intelligent robots: Issues and challenges. IEEE/CAA Journal of Automatica Sinica, 4(4), 602–609. doi: 10.1109/JAS.2017.7510604
  • He, W., & Sun, C. (2016). Boundary feedback stabilisation of a flexible robotic manipulator with constraint. International Journal of Control, 89(3), 635–651. doi: 10.1080/00207179.2015.1088966
  • Huang, J., Guan, Z. H., Matsuno, T., Fukuda, T., & Sekiyama, K. (2010). Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Transactions on Robotics, 26(4), 750–758. doi: 10.1109/TRO.2010.2053732
  • Huang, J., Ri, S., Liu, L., Wang, Y. J., Kim, J. Y., & Pak, G. (2015). Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum. IEEE Transactions on Control Systems Technology, 23(6), 2400–2407. doi: 10.1109/TCST.2015.2404897
  • Ibanez, C. A., & Frias, O. G. (2008). Controlling the inverted pendulum by means of a nested saturation function. Nonlinear Dynamics, 53(4), 273–280. doi: 10.1007/s11071-007-9224-3
  • Jiang, Z. P., Lefeber, E., & Nijmeijer, H. (2001). Saturated stabilization and tracking of a nonholonomic mobile robot. Systems and Control Letters, 42(5), 327–332. doi: 10.1016/S0167-6911(00)00104-3
  • Keller, M., Hoffmann, F., Bertram, T., Hass, C., & Seewald, A. (2014, August). Planning of optimal collision avoidance trajectories with timed elastic bands. Proceedings of the 19th world congress of the international federation of automatic control (pp. 9822–9827). Cape Town, South Africa: IFAC.
  • Li, Z. J., & Yang, C. G. (2012). Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models. IEEE Transactions on Control Systems Technology, 20(6), 1583–1591. doi: 10.1109/TCST.2011.2168224
  • Li, Z. J., Yang, C. G., & Fan, L. P. (2012). Advanced control of wheeled inverted pendulum systems. London: Springer.
  • Li, W. H., Yang, C. G., Jiang, Y. M., Liu, X. F., & Su, C. Y. (2017). Motion planning for omnidirectional wheeled mobile robot by potential field method. Journal of Advanced Transportation, 2017, 4961383.
  • Luo, Y. G., Xiang, Y., Cao, K., & Li, K. Q. (2016). A dynamic automated lane change maneuver based on vehicle-to-vehicle communication. Transportation Research Part C: Emerging Technologies, 62, 87–102. doi: 10.1016/j.trc.2015.11.011
  • Ogren, P., & Leonard, N. E. (2005). A convergent dynamic window approach to obstacle avoidance. IEEE Transactions on Robotics, 21(2), 188–195. doi: 10.1109/TRO.2004.838008
  • Olfati-Saber, R. (2002). Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Transactions on Automatic Control, 47(11), 1949–1952. doi: 10.1109/TAC.2002.804457
  • Papadimitriou, I., & Tomizuka, M. (2003, June). Fast lane changing computations using polynomials. Proceedings of the american control conference (pp. 48–53). Denver, USA: IEEE.
  • Pathak, K., Franch, J., & Agrawal, S. K. (2005). Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics, 21(3), 505–513. doi: 10.1109/TRO.2004.840905
  • Sun, N., Wu, Y. M., Fang, Y. C., & Chen, H. (2016, June). A new triple-stage stabilizing control method for two-wheeled inverted pendulum robots. IEEE international conference on real-time computing and robotics (pp. 27–32). Angkor Wat, Cambodia: IEEE.
  • Teel, A. R. (1992, June). Using saturation to stabilize a class of single-input partially linear composite systems. IFAC symposium on nonlinear control systems design (pp. 379–384). Bordeaux, France: IFAC.
  • Yang, C. G., Li, Z. J., Cui, R. X., & Xu, B. G. (2014). Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Transactions on Neural Networks and Learning Systems, 25(11), 2004–2016. doi: 10.1109/TNNLS.2014.2302475
  • Yang, C. G., Li, Z. J., & Li, J. (2013). Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Transactions on Cybernetics, 43(1), 24–36. doi: 10.1109/TSMCB.2012.2198813
  • Ye, W. Q., Li, Z. J., Yang, C. G., Sun, J. J., Su, C. Y., & Lu, R. Q. (2016). Vision-based human tracking control of a wheeled inverted pendulum robot. IEEE transactions on Cybernetics, 46(11), 2423–2434. doi: 10.1109/TCYB.2015.2478154
  • Yu, X. H., & Man, Z. H. (2002). Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(2), 261–264. doi: 10.1109/81.983876
  • Yue, M., An, C., Du, Y., & Sun, J. Z. (2016). Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets and Systems, 290, 158–177. doi: 10.1016/j.fss.2015.08.013
  • Yue, M., Wang, S., & Sun, J. Z. (2016). Simultaneous balancing and trajectory tracking control for two-wheeled inverted pendulum vehicles: A composite control approach. Neurocomputing, 191, 44–54. doi: 10.1016/j.neucom.2016.01.008
  • Zhang, S. M., Deng, W. W., Zhao, Q. R., Sun, H., & Litkouhi, B. (2013, October). Dynamic trajectory planning for vehicle autonomous driving. IEEE international conference on systems, man, and cybernetics (pp. 4161–4166). Manchester, UK: IEEE.
  • Zhao, L., & Jia, Y. M. (2015). Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. International Journal of Control, 88(6), 1150–1162. doi: 10.1080/00207179.2014.996854

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.