368
Views
6
CrossRef citations to date
0
Altmetric
Articles

Probability-triggered formation control with adaptive roles

, ORCID Icon, ORCID Icon &
Pages 1989-2000 | Received 27 Jan 2018, Accepted 16 Oct 2018, Published online: 31 Oct 2018

References

  • Almeida, J., Silvestre, C., & Pascoal, A. (2017). Synchronization of multiagent systems using event-triggered and self-triggered broadcasts. IEEE Transactions on Automatic Control, 62(9), 4741–4746. doi: 10.1109/TAC.2017.2671029
  • Cao, Y., & Ren, W. (2010). Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting. International Journal of Robust and Nonlinear Control, 20(9), 987–1000.
  • Cao, Y., & Ren, W. (2014). Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. Automatica, 50(10), 2648–2656. doi: 10.1016/j.automatica.2014.08.028
  • Cao, Y., Yu, W., Ren, W., & Chen, G. (2013). An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1), 427–438. doi: 10.1109/TII.2012.2219061
  • Chen, W., Li, X., & Jiao, L. (2013). Quantized consensus of second-order continuous-time multi-agent systems with a directed topology via sampled data. Automatica, 49(7), 2236–2242. doi: 10.1016/j.automatica.2013.04.002
  • Derr, K., & Milos, M. (2014). Adaptive control parameters for dispersal of multi-agent mobile ad hoc network (MANET) swarms. IEEE Transactions on Industrial Informatics, 9(4), 1900–1911. doi: 10.1109/TII.2012.2228870
  • Falconi, R. (2015). Edge-weighted consensus-based formation control strategy with collision avoidance. Robotica, 33(2), 332–347. doi: 10.1017/S0263574714000368
  • Hao, H., & Barooah, P. (2013). Stability and robustness of large platoons of vehicles with double-integrator models and nearest neighbor interaction. International Journal of Robust and Nonlinear Control, 23(18), 2097–2122. doi: 10.1002/rnc.2872
  • He, W., Chen, Y., & Yin, Z. (2016). Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Transactions on Cybernetics, 46(3), 620–629. doi: 10.1109/TCYB.2015.2411285
  • He, W., Dong, Y., & Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(3), 334–344. doi: 10.1109/TSMC.2015.2429555
  • He, W., & Ge, S. S. (2016). Cooperative control of a nonuniform gantry crane with constrained tension. Automatica, 66, 146–154. doi: 10.1016/j.automatica.2015.12.026
  • He, W., Yan, Z., Sun, C., & Chen, Y. (2017). Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Transactions on Cybernetics, 47(10), 3452–3465. doi: 10.1109/TCYB.2017.2720801
  • Huang, H., Yu, C., & Wu, Q. (2013). Autonomous scale control of multiagent formations with only shape constraints. International Journal of Robust and Nonlinear Control, 23(7), 765–791. doi: 10.1002/rnc.2800
  • Laventall, K., & Cortes, J. (2009). Coverage control by multi-robot networks with limited-range anisotropic sensory. International Journal of Control, 82(6), 1113–1121. doi: 10.1080/00207170802471211
  • Li, Z., Ren, W., Liu, X., & Fu, M. (2013). Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. International Journal of Robust and Nonlinear Control, 23(5), 534–547. doi: 10.1002/rnc.1847
  • Mei, J., Ren, W., & Ma, G. (2013). Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements. Automatica, 49(5), 1419–1427. doi: 10.1016/j.automatica.2013.01.058
  • Meng, Y., Guo, H., & Jin, Y. (2013). A morphogenetic approach to flexible and robust shape formation for swarm robotic systems. Robotics and Autonomous Systems, 61(1), 25–38. doi: 10.1016/j.robot.2012.09.009
  • Sabattini, L., Secchi, C., & Fantuzzi, C. (2011). Arbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformation. Autonomous Robots, 30(4), 385–397. doi: 10.1007/s10514-011-9225-4
  • Sacramento, L. S. (2017). Communication delay robustness improvement of linear consensus protocol in undirected graphs inspired on deformed algebra. International Journal of Innovative Computing, Information and Control, 13(6), 2089–2098.
  • Shen, Q., Jiang, B., Shi, P., & Zhao, J. (2014). Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults. IEEE Transactions on Fuzzy Systems, 22(3), 494–504. doi: 10.1109/TFUZZ.2013.2260757
  • Shi, P., & Shen, Q. (2015). Cooperative control of multi-agent systems with unknown state-dependent controlling effects. IEEE Transactions on Automation Science and Engineering, 12(3), 827–834. doi: 10.1109/TASE.2015.2403261
  • Toda, Y., & Kubota, N. (2013). Self-localization based on multiresolution map for remote control of multiple mobile robots. IEEE Transactions on Industrial Informatics, 9(3), 1772–1781. doi: 10.1109/TII.2013.2261306
  • Viegas, D., Batista, P., Oliveira, P., & Silvestre, C. (2016). Decentralized state observers for range-based position and velocity estimation in acyclic formations with fixed topologies. International Journal of Robust and Nonlinear Control, 26(5), 963–994. doi: 10.1002/rnc.3346
  • Wang, P., & Geng, Z. (2017). Adaptive distributed dynamic surface control for cooperative path following of multi-robot systems with unknown uncertainties under directed graphs. International Journal of Innovative Computing, Information and Control, 13(1), 261–276.
  • Wang, X., Li, S., & Shi, P. (2014). Distributed finite-time containment control for double-integrator multiagent systems. IEEE Transactions on Cybernetics, 44(9), 1518–1528. doi: 10.1109/TCYB.2013.2288980
  • Wei, B., Xiao, F., & Dai, M. Z. (2018). Edge event-triggered control for multi-agent systems under directed communication topologies. International Journal of Control, 91(4), 887–896. doi: 10.1080/00207179.2017.1295320
  • Wen, G., Duan, Z., Ren, W., & Chen, G. (2014). Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications. International Journal of Robust and Nonlinear Control, 24(16), 2438–2457. doi: 10.1002/rnc.3001
  • Wu, Y., & Wang, L. (2015). Sampled-data consensus for multi-agent systems with quantised communication. International Journal of Control, 88(2), 413–428. doi: 10.1080/00207179.2014.955532
  • Xiao, F., & Chen, T. (2016). Sampled-data consensus in multi- agent systems with asynchronous hybrid event-time driven interactions. Systems & Control Letters, 89, 24–34. doi: 10.1016/j.sysconle.2015.12.006
  • Yu, W., Ren, W., Zheng, W. X., Chen, G., & Lu, J. (2013). Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. Automatica, 49(7), 2107–2115. doi: 10.1016/j.automatica.2013.03.005
  • Yu, H., Shi, P., & Lim, C. C. (2016). Robot formation control in stealth mode with scalable team size. International Journal of Control, 89(11), 2155–2168. doi: 10.1080/00207179.2016.1149887
  • Yu, H., Shi, P., & Lim, C. C. (2017). Scalable formation control in stealth with limited sensing range. International Journal of Robust and Nonlinear Control, 27(3), 410–433. doi: 10.1002/rnc.3579
  • Yue, W., Guo, G., Wang, L., & Wang, W. (2015). Nonlinear platoon control of Arduino cars with range-limited sensors. International Journal of Control, 88(5), 1037–1050.
  • Zhang, Z., Zhang, L., Hao, F., & Wang, L. (2015). Distributed event-triggered consensus for multi-agent systems with quantisation. International Journal of Control, 88(6), 1112–1122. doi: 10.1080/00207179.2014.994038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.