169
Views
4
CrossRef citations to date
0
Altmetric
Articles

Finite-time stability and stabilisation with polyhedral domains for linear systems

ORCID Icon & ORCID Icon
Pages 2086-2094 | Received 27 Feb 2018, Accepted 07 Oct 2018, Published online: 01 Nov 2018

References

  • Chzhan-Sy-In (1959). Stability of motion during a finite time interval. Journal of Applied Mathematics and Mechanics, 23(2), 333–344. doi: 10.1016/0021-8928(59)90090-5
  • Amato, F., Ambrosino, R., Ariola, M., & Calabrese, F. (2007, December). Finite-time stability of linear systems: An approach based on polyhedral Lyapunov functions. In 2007 46th IEEE conference on decision and control, New Orleans, LA (pp. 1100–1105).
  • Amato, F., Ambrosino, R., Ariola, M., & Calabrese, F. (2008, June). Finite-time stability analysis of linear discrete-time systems via polyhedral Lyapunov functions. In 2008 American control conference, Seattle, WA (pp. 1656–1660).
  • Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., & De Tommasi, G. (2014). Finite-time stability and control. In Lecture notes in control and information sciences (Vol. 453). London: Springer-Verlag.
  • Amato, F., Ambrosino, R., Ariola, M., & Cosentino, C. (2009). Finite-time stability of linear time-varying systems with jumps. Automatica, 45(5), 1354–1358. doi: 10.1016/j.automatica.2008.12.016
  • Amato, F., Ariola, M., & Cosentino, C. (2006). Finite-time stabilization via dynamic output feedback. Automatica, 42(2), 337–342. doi: 10.1016/j.automatica.2005.09.007
  • Amato, F., Ariola, M., & Cosentino, C. (2010, April). Finite-time stability of linear time-varying systems: Analysis and controller design. IEEE Transactions on Automatic Control, 55(4), 1003–1008. doi: 10.1109/TAC.2010.2041680
  • Amato, F., Ariola, M., & Cosentino, C. (2011). Robust finite-time stabilisation of uncertain linear systems. International Journal of Control, 84(12), 2117–2127. doi: 10.1080/00207179.2011.633230
  • Amato, F., Ariola, M., Cosentino, C., Abdallah, C. T., & Dorato, P. (2003, June). Necessary and sufficient conditions for finite-time stability of linear systems. Proceedings of the 2003 american control conference, Denver, CO (Vol. 5, pp. 4452–4456).
  • Amato, F., Ariola, M., & Dorato, P. (2001). Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, 37(9), 1459–1463. doi: 10.1016/S0005-1098(01)00087-5
  • Ambrosino, R., Garone, E., Ariola, M., & Amato, F. (2012, December). Piecewise quadratic functions for finite-time stability analysis. 2012 IEEE 51st IEEE conference on decision and control (CDC), Maui, HI.
  • Asarin, E., Bournez, O., Dang, T., & Maler, O. (2000). Approximate reachability analysis of piecewise-linear dynamical systems. In N. Lynch & B. H. Krogh (Eds.), Hybrid Systems: Computation and Control. HSCC 2000. Lecture Notes in Computer Science (Vol. 1790). Berlin: Springer.
  • Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to linear optimization (1st ed.). Belmont, MA: Athena Scientific.
  • Bhat, S. P., & Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38(3), 751–766. doi: 10.1137/S0363012997321358
  • Bitsoris, G. (1988, September). On the positive invariance of polyhedral sets for discrete-time systems. Systems & Control Letters, 11(3), 243–248. doi: 10.1016/0167-6911(88)90065-5
  • Blanchini, F., & Miani, S. (2015). Set-theoretic methods in control (2nd ed.). Basel: Birkhäuser.
  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory (Vol. 15). Philadelphia, PA: SIAM.
  • Chutinan, A. C., & Krogh, B. H. (1998). Computing polyhedral approximations to flow pipes for dynamic systems. Proceedings of the 37th IEEE conference on decision and control, Tampa, FL (Vol. 2, pp. 2089–2094).
  • Chutinan, A. C., & Krogh, B. H. (2003). Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control, 48, 64–75. doi: 10.1109/TAC.2002.806655
  • Dorato, P. (1961). Short-time stability. IRE Transactions Automatic Control, 8, 86.
  • Dorato, P. (2006). An overview of finite-time stability. In Current trends in nonlinear systems and control: In honor of Petar Kokotović and Turi Nicosia (pp. 185–194). Boston: Birkhäuser.
  • Dorato, P., Abdallah, C. T., & Famularo, D. (1997, December). Robust finite-time stability design via linear matrix inequalities. Proceedings of the 36th IEEE conference on decision and control, San Diego, CA (Vol. 2, pp. 1305–1306).
  • Esterhuizen, W., & Wang, Q. G. (2017, December). Control design with guaranteed transient performance via reachable set estimates. IFAC-PapersOnLine, 50(2), 283–288. doi: 10.1016/j.ifacol.2017.12.059
  • Garcia, G., Tarbouriech, S., & Bernussou, J. (2009, February). Finite-time stabilization of linear time-varying continuous systems. IEEE Transactions on Automatic Control, 54(2), 364–369. doi: 10.1109/TAC.2008.2008325
  • Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. Proceedings of the 8th international workshop hybrid systems: Computation and control, HSCC 2005, Zurich, Switzerland, 2005, March 9–11 (pp. 291–305). Berlin, Heidelberg: Springer.
  • Girard, A., Guernic, C. L., & Maler, O. (2006). Efficient computation of reachable sets of linear time-invariant systems with inputs. Proceedings of the 9th international workshop hybrid systems: Computation and control (HSCC), Santa Barbara, CA, USA, 2006, March 29–31 (pp. 257–271). Berlin, Heidelberg: Springer.
  • Karamenkov, G. (1958). Stability of motion in a finite time interval. Journal of Applied Mathematics and Mechanics, 17(5), 529–540.
  • Lebedev, A. (1954). The problem of stability in a finite interval of time. Journal of Applied Mathematics and Mechanics, 18(1), 75–94.
  • Mahler, O. (2014). Algorithmic verification of continuous and hybrid systems. Retrieved from arXiv:1403.0952
  • Tanaka, K., & Wang, H. (2001). Fuzzy control systems design and analysis: A linear matrix inequality approach. New York, NY, USA: John Wiley & Sons, Inc.
  • Weiss, L., & Infante, E. (1967, February). Finite time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, 12(1), 54–59. doi: 10.1109/TAC.1967.1098483

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.