155
Views
1
CrossRef citations to date
0
Altmetric
Articles

Distributed adaptive consensus control for high-order multiple non-holonomic systems

, &
Pages 2212-2227 | Received 24 Jan 2018, Accepted 16 Nov 2018, Published online: 03 Dec 2018

References

  • Astolfi, A. (1996). Discontinuous control of nonholonomic systems. Systems and Control Letters, 27, 37–45. doi: 10.1016/0167-6911(95)00041-0
  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In R. W. Brockett, R. S. Millman, & H. J. Sussman (Eds.), Differential geometric control theory (pp. 181–191), Birkhauser, Boston.
  • Cao, K. C., Jiang, B., & Yue, D. (2014). Consensus of multiple nonholonomic chained form systems. Systems and Control Letters, 72, 61–70. doi: 10.1016/j.sysconle.2014.07.003
  • Cao, K. C., Jiang, B., & Yue, D. (2017). Cooperative path following control of multiple nonholonomic mobile robots. ISA Transactions, 71, 161–169. doi: 10.1016/j.isatra.2017.06.028
  • Chu, X., Peng, Z. X., Wen, G. G., & Rahmani, A. (2018). Distributed formation tracking of multi-robot systems with nonholonomic constraint via event-triggered approach. Neurocomputing, 275, 121–131. doi: 10.1016/j.neucom.2017.05.007
  • Das, A., & Lewis, F. L. (2011). Distributed adaptive control for synchronization of second-order systems with unknown nonlinearities. International Journal of Robust and Nonlinear Control, 21, 1509–1524. doi: 10.1002/rnc.1647
  • Dimarogonas, D. V., & Kyriakopoulos, K. J. (2007). On the rendezvous problem for multiple nonholonomic agents. IEEE Transactions on Automatic Control, 52, 916–922. doi: 10.1109/TAC.2007.895897
  • Do, K. D. (2015). Global inverse optimal stabilization of stochastic nonholonomic systems. Systems and Control Letters, 75, 41–55. doi: 10.1016/j.sysconle.2014.11.003
  • Do, K. D., & Pan, J. (2007). Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems, 55, 191–204. doi: 10.1016/j.robot.2006.09.001
  • Dong, W. (2013). Distributed tracking control of networked chained systems. International Journal of Control, 86, 2159–2174. doi: 10.1080/00207179.2013.803156
  • Dong, W. J., & Farrel, J. A. (2009). Decentralized coperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica, 45, 706–710. doi: 10.1016/j.automatica.2008.09.015
  • Dong, W. J., & Farrel, Jay A. (2008). Coperative control of multiple nonholonomic mobile agents. IEEE Transactions on Automatic Control, 53, 1434–1448. doi: 10.1109/TAC.2008.925852
  • Du, H. B., Wen, G. H., Yu, X. H., Li, S. H., & Chen, M. Z. Q. (2015). Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica, 62, 236–242. doi: 10.1016/j.automatica.2015.09.026
  • Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49, 1465–1476. doi: 10.1109/TAC.2004.834433
  • Gao, F. Z., & Yuan, F. S. (2015). Adaptive finite-time stabilization for a class of uncertain high order nonholonomic systems. ISA Transactions, 54, 75–82. doi: 10.1016/j.isatra.2014.07.009
  • Ghommam, J., Mehrjerdi, H., Mnif, F., & Saad, M. (2011). Cascade design for formation control of nonholonomic systems in chained form. Journal of The Franklin Institute, 348, 973–997. doi: 10.1016/j.jfranklin.2011.03.008
  • Güzey, H. M., Dierks, T., Jagannathan, S., & Acar, L. (2017). Hybrid consensus-based control of mobile robot formation. Journal of Intelligent and Robotic Systems, 88, 181–200. doi: 10.1007/s10846-017-0541-6
  • Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48, 988–1001. doi: 10.1109/TAC.2003.812781
  • Jenabzadeh, A., & Safarinejadian, B. (2018). Tracking control of nonholonomic mobile agents with external disturbances and input delay. ISA Transactions, 76, 122–133. doi: 10.1016/j.isatra.2018.03.018
  • Jiang, Z. P. (1996). Iterative design of time-varying stabilizers for multi-input in chained form. Systems and Control Letters, 28, 255–262. doi: 10.1016/0167-6911(96)00029-1
  • Jiang, Z. P. (2000). Robust exponential regulation of nonholonomic systems with uncertainties. Automatica, 36, 189–209. doi: 10.1016/S0005-1098(99)00115-6
  • Ke, P., & Yang, Y. (2009). Leader-following consensus problem with a varying-velocity leader and time-varying delays. Physica A, 388, 193–208. doi: 10.1016/j.physa.2008.10.009
  • Khalil, H. (1992). Nonlinear systems. New York, NY: Macmillan.
  • Kolmanovsky, I., & McClamroch, N. H. (1995). Developments in nonholonomic control problems. IEEE Control Systems Magazine, 15, 20–36. doi: 10.1109/37.476384
  • Kolmanovsky, I., & McClamroch, N. H. (1996). Hybrid feedback laws for a class of cascaded nonlinear control systems. IEEE Transactions on Automatic Control, 41, 1271–1282. doi: 10.1109/9.536497
  • Li, W. Q., Liu, L., & Feng, G. (2017). Cooperative control of multiple stochastic nonlinear systems. Automatica, 82, 218–225. doi: 10.1016/j.automatica.2017.04.052
  • Li, W. Q., Liu, L., & Feng, G. (2018). Output tracking of stochastic nonlinear systems with unstable linearization. International Journal of Robust and Nonlinear Control, 28, 466–477. doi: 10.1002/rnc.3877
  • Li, W. Q., Liu, L., & Feng, G. (2019). Cooperative control of multiple nonlinear benchmark systems perturbed by second-order moment processes. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2018.2869385.
  • Li, W. Q., Liu, L., & Feng, G. (2019). Distributed output-feedback tracking of multiple nonlinear systems with unmeasurable states. IEEE Transactions on Systems, Man, and Cybernetics: Systems. doi:10.1109/TSMC.2018.2875453.
  • Li, W. Q., Xie, L. H., & Zhang, J. F. (2015). Containment control of leader-following multi-agent systems with Markovian switching network topologies and measurement noises. Automatica, 51, 263–267. doi: 10.1016/j.automatica.2014.10.070
  • Li, W. Q., & Zhang, J. F. (2014). Distributed practical output tracking of high-order stochastic multi-agent systems with inherent nonlinear drift and diffusion terms. Automatica, 50, 3231–3238. doi: 10.1016/j.automatica.2014.10.041
  • Liu, T., & Jiang, Z. P. (2013). Distributed formation control of nonholonomic mobile robots without global position measurement. Automatica, 49, 592–600. doi: 10.1016/j.automatica.2012.11.031
  • Marino, R., & Tomei, P. (1995). Nonlinear control design: Geometric, adaptive and robust. London: Prentice Hall.
  • Miao, Z. Q., Wang, Y. N., & Yang, Y. M. (2014). Robust tracking control of uncertain dynamic nonholonomic systems using recurrent neural networks. Neurocomputing, 142, 216–227. doi: 10.1016/j.neucom.2014.03.061
  • Murray, R. R., & Sastry, S. S. (1993). Nonholonomic motion planning: Steering using sinusoids. IEEE Transactions on Automatic Control, 38, 700–716. doi: 10.1109/9.277235
  • Ou, M., Du, H., & Li, S. (2012). Finite-time tracking control of multiple nonholonomic mobile robots. Journal of The Franklin Institute, 349, 2834–2860. doi: 10.1016/j.jfranklin.2012.08.009
  • Peng, Z. X., Yang, S. C., Wen, G. G., Rahmani, A., & Yu, Y. G. (2016). Adaptive distributed formation control of multiple nonholonomic wheeled mobile robots. Neurocomputing, 173, 1485–1494. doi: 10.1016/j.neucom.2015.09.022
  • Shojaeo, K. (2017). Neural adaptive output feedback formation control of type (m,s) wheeled mobile robots. IET Control Theory and Applications, 11, 504–515. doi: 10.1049/iet-cta.2016.0952
  • Tian, Y. P., & Li, S. H. (2002). Exponential stabilization of nonholonomic systems by smooth time-varying control. Automatica, 38, 1139–1146. doi: 10.1016/S0005-1098(01)00303-X
  • Walsh, G. C., & Bushinell, L. G. (1995). Stabilization of multiple input chained form control systems. Systems and Control Letters, 25, 227–234. doi: 10.1016/0167-6911(94)00061-Y
  • Wang, W., Huang, J. S., Wen, C. Y., & Fan, H. J. (2014). Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica, 50, 1254–1263. doi: 10.1016/j.automatica.2014.02.028
  • Wu, Y. H., Hu, B., & Guan, Z. H. (2018). Consensus problems over cooperation-competition random switching networks with noisy channels. IEEE Transactions on Neural Networks and Learning Systems. DOI:10.1109/TNNLS.2018.2826847.
  • Wu, Y. H., Hu, B., & Guan, Z. H. (2019). Exponential consensus analysis for multiagent networks based on time-delay impulsive systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems. DOI:10.1109/TSMC.2017.2722102.
  • Wu, Y. Q., Zhao, Y., & Yu, J. B. (2013). Global asymptotic stability controller of uncertain nonholonomic systems. Journal of The Franklin Institute, 350, 1248–1263. doi: 10.1016/j.jfranklin.2013.02.018
  • Yang, S. C., Cao, Y. G., Peng, Z. X., Wen, G. G., & Guo, K. H. (2017). Distributed formation control of nonholonomic autonomous vehicle via RBF neural network. Mechanical Systems and Signal Processing, 87, 81–95. doi: 10.1016/j.ymssp.2016.04.015
  • Zhang, H. W., & Lewis, F. L. (2012). Adaptive cooperative tracking control of high-order nonlinear systems with unknown dynamics. Automatica, 48, 1432–1439. doi: 10.1016/j.automatica.2012.05.008
  • Zhang, Z. C., & Wu, Y. Q. (2015). Further results on global stabilization and tracking controller for underactuated surface vessels with non-diagonal inertia and damping matrices. International Journal of Control, 88, 1679–1692. doi: 10.1080/00207179.2015.1013061
  • Zhu, W., & Cheng, D. (2010). Leader-following consensus of second-order agents with multiple time-varying delays. Automatica, 46, 1994–1999. doi: 10.1016/j.automatica.2010.08.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.