557
Views
12
CrossRef citations to date
0
Altmetric
Articles

Trajectory tracking control based on a virtual closed-loop system for autonomous underwater vehicles

ORCID Icon, &
Pages 2789-2803 | Received 28 Mar 2018, Accepted 14 Dec 2018, Published online: 22 Jan 2019

References

  • Baldini, A., Ciabattoni, L., Felicetti, R., Ferracuti, F., Freddi, A., & Monteriu, A. (2018). Dynamic surface fault tolerant control for underwater remotely operated vehicles. ISA Transactions, 78, 10–20. doi: 10.1016/j.isatra.2018.02.021
  • Bogue, R. (2015). Underwater robots: A review of technologies and applications. Industrial Robot: An International Journal, 42(3), 186–191. doi: 10.1108/Ir-01-2015-0010
  • Caharija, W., Pettersen, K. Y., Bibuli, M., Calado, P., Zereik, E., Braga, J., … Bruzzone, G. (2016). Integral line-of-sight guidance and control of underactuated marine vehicles: Theory, simulations, and experiments. IEEE Transactions on Control Systems Technology, 24(5), 1623–1642. doi: 10.1109/Tcst.2015.2504838
  • Campos, E., Chemori, A., Creuze, V., Torres, J., & Lozano, R. (2017). Saturation based nonlinear depth and yaw control of underwater vehicles with stability analysis and real-time experiments. Mechatronics, 45, 49–59. doi: 10.1016/j.mechatronics.2017.05.004
  • Chu, Z., Zhu, D., & Yang, S. X. (2017). Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Transactions on Neural Networks and Learning Systems, 28(7), 1633–1645. doi: 10.1109/TNNLS.2016.2544786
  • Cui, R., Chen, L., Yang, C., & Chen, M. (2017). Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Transactions on Industrial Electronics, 64(8), 6785–6795. doi: 10.1109/tie.2017.2694410
  • Cui, R. X., Zhang, X., & Cui, D. (2016). Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Engineering, 123, 45–54. doi: 10.1016/j.oceaneng.2016.06.041
  • Cunha, J. P. V. S., Hsu, L., Oliveira, T. R., & Costa, R. R. (2015). Output-feedback sliding-mode control for systems subjected to actuator and internal dynamics failures. IET Control Theory & Applications, 9(4), 637–647. doi: 10.1049/iet-cta.2014.0395
  • Ferreira, C. Z., Cardoso, R., Meza, M. E. M., & Avila, J. P. J. (2018). Controlling tracking trajectory of a robotic vehicle for inspection of underwater structures. Ocean Engineering, 149, 373–382. doi: 10.1016/j.oceaneng.2017.12.032
  • Fischer, N., Hughes, D., Walters, P., Schwartz, E. M., & Dixon, W. E. (2014). Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Transactions on Robotics, 30(4), 845–852. doi: 10.1109/tro.2014.2305791
  • Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. New York: John Wiley & Sons.
  • Fossen, T. I., & Lekkas, A. M. (2017). Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents. International Journal of Adaptive Control and Signal Processing, 31(4), 445–463. doi: 10.1002/acs.2550
  • Gao, J., An, X., Proctor, A., & Bradley, C. (2017). Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean Engineering, 142, 666–675. doi: 10.1016/j.oceaneng.2017.07.015
  • Ghavidel, H. F., & Kalat, A. A. (2017). Robust control for MIMO hybrid dynamical system of underwater vehicles by composite adaptive fuzzy estimation of uncertainties. Nonlinear Dynamics, 89(4), 2347–2365. doi: 10.1007/s11071-017-3590-2
  • Hoang, N. Q., & Kreuzer, E. (2007). Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: Theory and experiments. Control Engineering Practice, 15(4), 411–419. doi: 10.1016/j.conengprac.2006.08.002
  • Jacobi, M. (2015). Autonomous inspection of underwater structures. Robotics and Autonomous Systems, 67, 80–86. doi: 10.1016/j.robot.2014.10.006
  • Karkoub, M., Wu, H.-M., & Hwang, C.-L. (2017). Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Engineering, 145, 188–198. doi: 10.1016/j.oceaneng.2017.08.025
  • Kim, M., Joe, H., Kim, J., & Yu, S.-C. (2015). Integral sliding mode controller for precise maneuvering of autonomous underwater vehicle in the presence of unknown environmental disturbances. International Journal of Control, 1–43. doi: 10.1080/00207179.2015.1031182
  • Leonessa, A., Haddad, W. M., Hayakawa, T., & Morel, Y. (2009). Adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints. International Journal of Adaptive Control and Signal Processing, 23(1), 73–96. doi: 10.1002/acs.1065
  • Li, S. H., Wang, X. Y., & Zhang, L. J. (2015). Finite-time output feedback tracking control for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 40(3), 727–751. doi: 10.1109/Joe.2014.2330958
  • Liu, X., Zhang, M., & Yao, F. (2018). Adaptive fault tolerant control and thruster fault reconstruction for autonomous underwater vehicle. Ocean Engineering, 155, 10–23. doi: 10.1016/j.oceaneng.2018.02.007
  • Lopez-Araujo, D. J., Zavala-Rio, A., Santibanez, V., & Reyes, F. (2015). A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs. International Journal of Adaptive Control and Signal Processing, 29(2), 180–200. doi: 10.1002/acs.2466
  • Martin, S. C., & Whitcomb, L. L. (2018). Nonlinear model-based tracking control of underwater vehicles with three degree-of-freedom fully coupled dynamical plant models: Theory and experimental evaluation. IEEE Transactions on Control Systems Technology, 26(2), 404–414. doi: 10.1109/Tcst.2017.2665974
  • Patre, B. M., Londhe, P. S., Waghmare, L. M., & Mohan, S. (2018). Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle. Ocean Engineering, 159, 372–387. doi: 10.1016/j.oceaneng.2018.03.082
  • Peng, Z., & Wang, J. (2018). Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(4), 535–544. doi: 10.1109/tsmc.2017.2697447
  • Peng, Z., Wang, J., & Wang, D. (2018). Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Transactions on Control Systems Technology, 26(3), 1083–1090. doi: 10.1109/tcst.2017.2699167
  • Podder, T. K., & Sarkar, N. (2001). Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robotics and Autonomous Systems, 34(1), 39–52. doi: 10.1016/S0921-8890(00)00100-7
  • Rout, R., & Subudhi, B. (2017). NARMAX self-tuning controller for line-of-sight-based waypoint tracking for an autonomous underwater vehicle. IEEE Transactions on Control Systems Technology, 25(4), 1529–1536. doi: 10.1109/tcst.2016.2613969
  • Santos, C. H. F., Cildoz, M. U., Terra, M. H., & De Pieri, E. R. (2018). Backstepping sliding mode control with functional tuning based on an instantaneous power approach applied to an underwater vehicle. International Journal of Systems Science, 49(4), 858–866. doi: 10.1080/00207721.2018.1424966
  • Shen, C., Shi, Y., & Buckham, B. (2017). Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach. IEEE/ASME Transactions on Mechatronics, 22(3), 1163–1173. doi: 10.1109/tmech.2016.2612689
  • Wang, Y.-L., & Han, Q.-L. (2018). Network-based modelling and dynamic output feedback control for unmanned marine vehicles in network environments. Automatica, 91, 43–53. doi: 10.1016/j.automatica.2018.01.026
  • Wang, Y. J., Zhang, M. J., Wilson, P. A., & Liu, X. (2015). Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault. Ocean Engineering, 110, 15–24. doi: 10.1016/j.oceaneng.2015.09.035
  • Yu, C., Xiang, X., Lapierre, L., & Zhang, Q. (2017). Robust magnetic tracking of subsea cable by AUV in the presence of sensor noise and ocean Currents. IEEE Journal of Oceanic Engineering, 1–12. doi: 10.1109/joe.2017.2768105
  • Zhang, M. J., Liu, X., & Wang, F. (2017). Backstepping based adaptive region tracking fault tolerant control for autonomous underwater vehicles. Journal of Navigation, 70(1), 184–204. doi: 10.1017/S0373463316000370

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.