265
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Chaos control of small-scale UAV helicopter based on high order differential feedback controller

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2473-2484 | Received 15 Apr 2020, Accepted 04 Apr 2021, Published online: 20 Apr 2021

References

  • Agee, J., Bingul, Z., & Kizir, S. (2015). Higher-order differential feedback control of a flexible-joint manipulator. Journal of Vibration and Control, 21(10), 1976–1986. https://doi.org/10.1177/1077546313504979
  • Bartolini, G., Pisano, A., Punta, E., & Usai, E. (2003). A survey of applications of second-order sliding mode control to mechanical systems. International Journal of Control, 76(9-10), 875–892. https://doi.org/10.1080/0020717031000099010
  • Bi, H., Qi, G., Hu, J., Faradja, P., & Chen, G. (2020). Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle. Chaos, Solitons and Fractals, 138, 109815. https://doi.org/10.1016/j.chaos.2020.109815
  • Bi, H., Qi, G., & Hu, J. (2019). Modeling and analysis of chaos and bifurcations for the attitude system of a quadrotor unmanned aerial vehicle. Complexity. https://doi.org/10.1155/2019/6313925
  • Cai, G., Cai, A., Chen, B., & Lee, T. H. (2008). Construction, modeling and control of a mini autonomous UAV helicopter. IEEE International Conference on Automation and Logistics, 449–454. https://doi.org/10.1109/ICAL.2008.4636193
  • Cai, G., Chen, B., & Lee, T. (2011). Unmanned rotorcraft systems. Springer-Verlag.
  • Cao, S. G., Rees, N. W., & Feng, G. (1997). Analysis and design for a class of complex control systems Part I: Fuzzy modelling and identification. Automatica, 33(6), 1029–1039. https://doi.org/10.1016/S0005-1098(97)00010-1
  • Cao, L., Xiao, B., & Golestani, M. (2020). Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dynamics, 100(3), 2505–2519. https://doi.org/10.1007/s11071-020-05596-5
  • Fan, X., Yi, Y., & Zhang, T. (2016). Disturbance rejection control of yaw channel of a small-scale unmanned helicopter via Takagi–Sugeno disturbance modeling approach. International Journal of Advanced Robotic Systems, 13(5), 1–8. https://doi.org/10.1177/1729881416671113
  • Faradja, P., & Qi, G. (2020). Analysis of multistability, hidden chaos and transient chaos in brushless DC motor. Chaos, Solitons and Fractals, 132, 109606. https://doi.org/10.1016/j.chaos.2020.109606
  • Ho, H., Wong, Y., & Rad, A. (2008). Direct adaptive fuzzy control for a nonlinear helicopter system. Aircraft Engineering and Aerospace Technology, 80(2), 124–128. https://doi.org/10.1108/00022660810859346
  • Kendoul, F. (2012). Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. Journal of Field Robotics, 29(2), 315–378. https://doi.org/10.1002/rob.20414
  • Leonard, F., Martini, A., & Abba, G. (2012). Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts. IEEE Transactions on Control Systems Technology, 20(1), 154–163. https://doi.org/10.1109/TCST.2010.2102023
  • Nyabundi, S., Qi, G., Hamam, Y., & Munda, J. (2009). DC motor control via high order differential feedback control. 9th IEEE AFRICON Conference, Nairobi, pp. 1–5.
  • Qi, G. (2019). Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems. Nonlinear Dynamics, 95(3), 2063–2077. https://doi.org/10.1007/s11071-018-4676-1
  • Qi, G., Chen, Z., & Yuan, Z. (2005). Model-free control of affine chaotic systems. Physics Letters A, 344(2), 189–202. https://doi.org/10.1016/j.physleta.2005.06.073
  • Qi, G., Chen, Z., & Yuan, Z. (2008). Adaptive high order differential feedback control for affine nonlinear system. Chaos, Solitons and Fractals, 37(1), 308–315. https://doi.org/10.1016/j.chaos.2006.09.027
  • Qi, G., & Huang, D. (2019). Modeling and dynamical analysis of a small-scale unmanned helicopter. Nonlinear Dynamics, 98(3), 2131–2145. https://doi.org/10.1007/s11071-019-05313-x
  • Raptis, I., & Valavanis, K. (2011). Velocity and heading tracking control for small-scale unmanned helicopters. American Control Conference (ACC), pp. 1579–1586.
  • Sanchez, E., Becerra, H., & Velez, C. (2007). Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. Information Sciences, 177(10), 1999–2022. https://doi.org/10.1016/j.ins.2006.10.001
  • Shao, S., & Gao, Z. (2016). On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. International Journal of Control, 1–21. https://doi.org/10.1080/00207179.2016.1236217
  • Shi, X., Dai, Y., Liu, Z., & Qi, G, Y. (2010). High order differential feedback controller and its application in servo control system of NC machine tools. International Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, pp. 241–244.
  • Wang, W., & Xia, P. (2007). Adaptive control of helicopter ground resonance with magnetorheological damper. Chinese Journal of Aeronautics, 20(6), 501–510. https://doi.org/10.1016/S1000-9361(07)60074-0
  • Wei, X., & Guo, L. (2009). Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances. International Journal of Control, 82(6), 1082–1098. https://doi.org/10.1080/00207170802455339
  • Xiao, B., Cao, L., & Xu, S. (2020). Robust tracking control of robot manipulators with actuator faults and joint velocity measurement uncertainty. IEEE/ASME Transactions on Mechatronics, 25(3), 1354–1365. https://doi.org/10.1109/TMECH.2020.2975117
  • Zhang, Y., Chen, Z., Zhang, X., Sun, Q., & Sun, M. (2018). A novel control scheme for quadrotor UAV based upon active disturbance rejection control. Aerospace Science and Technology, 79, 601–609. https://doi.org/10.1016/j.ast.2018.06.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.