134
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A recursive LMI-based algorithm for efficient vertex reduction in LPV systems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3379-3391 | Received 03 Oct 2020, Accepted 09 Aug 2021, Published online: 08 Sep 2021

References

  • Abbas, H. S., & Werner, H. (2010). Frequency-weighted discrete-time LPV model reduction using structurally balanced truncation. IEEE Transactions on Control Systems Technology, 19(1), 140–147. https://doi.org/10.1109/TCST.2010.2080274
  • Ahmadi, M., & Haeri, M. (2018). Multimodel control of nonlinear systems: An improved gap metric and stability margin-based method. Journal of Dynamic Systems, Measurement, and Control, 140(8), 081013. https://doi.org/10.1115/1.4039086
  • Apkarian, P., Gahinet, P., & Becker, G. (1995). Self-scheduled H∞ control of linear parameter-varying systems: A design example. Automatica, 31(9), 1251–1261. https://doi.org/10.1016/0005-1098(95)00038-X
  • Apkarian, P., & Tuan, H. D. (2000). Parameterized LMIs in control theory. SIAM Journal on Control and Optimization, 38(4), 1241–1264. https://doi.org/10.1137/S036301299732612X
  • Blanchini, F., & Miani, S. (2003). Stabilization of LPV systems: State feedback, state estimation, and duality. SIAM Journal on Control and Optimization, 42(1), 76–97. https://doi.org/10.1137/S0363012900372283
  • Bokor, J., & Balas, G. (2004). Detection filter design for LPV systems – A geometric approach. Automatica, 40(3), 511–518. https://doi.org/10.1016/j.automatica.2003.11.003
  • Chilali, M., & Gahinet, P. (1996). H∞ design with pole placement constraints: An LMI approach. IEEE Transactions on Automatic Control, 41(3), 358–367. https://doi.org/10.1109/9.486637
  • El-Sakkary, A. (1985). The gap metric: Robustness of stabilization of feedback systems. IEEE Transactions on Automatic Control, 30(3), 240–247. https://doi.org/10.1109/TAC.1985.1103926
  • Gzse, I., Luspay, T., Péni, T., Szabó, Z., & Vanek, B. (2016, December 12–14). Model order reduction of LPV systems based on parameter varying modal decomposition. IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV (pp. 7459–7464). IEEE. https://doi.org/10.1109/CDC.2016.7799421
  • Hoffmann, C., & Werner, H. (2015). A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Transactions on Control Systems Technology, 23(2), 416–433. https://doi.org/10.1109/TCST.2014.2327584
  • Ibáñez, B., Inthamoussou, F. A., & De Battista, H. (2019). Wind turbine load analysis of a full range LPV controller. Renewable Energy, 145, 2741–2753. https://doi.org/10.1016/j.renene.2019.08.016
  • Jabali, M. B. A., & Kazemi, M. H. (2017). A new LPV modeling approach using PCA-based parameter set mapping to design a PSS. Journal of Advanced Research, 8(1), 23–32. https://doi.org/10.1016/j.jare.2016.10.006
  • Kwiatkowski, A., Boll, M. T., & Werner, H. (2006, December 13–15). Automated generation and assessment of affine LPV models. 45th IEEE Conference on Decision and Control, San Diego, CA (pp. 6690–6695). IEEE. https://doi.org/10.1109/CDC.2006.377768
  • Kwiatkowski, A., & Werner, H. (2008). PCA-based parameter set mappings for LPV models with fewer parameters and less overbounding. IEEE Transactions on Control Systems Technology, 16(4), 781–788. https://doi.org/10.1109/TCST.2007.903094
  • Lofberg, J. (2004, September 2–4). YALMIP: A toolbox for modeling and optimization in MATLAB. IEEE international conference on Robotics and Automation (IEEE Cat. No. 04CH37508), Taipei, Taiwan (pp. 284–289). IEEE. https://doi.org/10.1109/CACSD.2004.1393890
  • López-Estrada, F. R., Ponsart, J. C., Theilliol, D., Zhang, Y., & Astorga-Zaragoza, C. M. (2016). LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV. Journal of Intelligent & Robotic Systems, 84(1–4), 163–177. https://doi.org/10.1007/s10846-015-0295-y
  • Marcos, A., & Balas, G. J. (2004). Development of linear-parameter-varying models for aircraft. Journal of Guidance, Control, and Dynamics, 27(2), 218–228. https://doi.org/10.2514/1.9165
  • Matz, J., Mourllion, B., & Birouche, A. (2018, June 12–15). On parametric model order reduction based on projections. European Control Conference (ECC), Limassol, Cyprus (pp. 2977–2982). IEEE. https://doi.org/10.23919/ECC.2018.8550420
  • Pfifer, H., & Seiler, P. (2015). Robustness analysis of linear parameter varying systems using integral quadratic constraints. International Journal of Robust and Nonlinear Control, 25(15), 2843–2864. https://doi.org/10.1002/rnc.v25.15
  • Poussot-Vassal, C., & Roos, C. (2012). Generation of a reduced-order LPV/LFT model from a set of large-scale MIMO LTI flexible aircraft models. Control Engineering Practice, 20(9), 919–930. https://doi.org/10.1016/j.conengprac.2012.06.001
  • Quarteroni, A., Sacco, R., & Saleri, F. (2010). Numerical mathematics (Vol. 37). Springer Science & Business Media.
  • Rizvi, S. Z., Abbasi, F., & Velni, J. M. (2018, June 27–29). Model reduction in linear parameter-varying models using autoencoder neural networks. Annual American Control Conference (ACC), Milwaukee, WI (pp. 6415–6420). IEEE. https://doi.org/10.23919/ACC.2018.8431912
  • Rizvi, S. Z., Mohammadpour, J., Tóth, R., & Meskin, N. (2016). A kernel-based PCA approach to model reduction of linear parameter-varying systems. IEEE Transactions on Control Systems Technology, 24(5), 1883–1891. https://doi.org/10.1109/TCST.2016.2517126
  • Robert, D., Sename, O., & Simon, D. (2009). An H∞ LPV design for sampling varying controllers: Experimentation with a T-inverted pendulum. IEEE Transactions on Control Systems Technology, 18(3), 741–749. https://doi.org/10.1109/TCST.2009.2026179
  • Rotondo, D., Cristofaro, A., Johansen, T. A., Nejjari, F., & Puig, V. (2019). Robust fault and icing diagnosis in unmanned aerial vehicles using LPV interval observers. International Journal of Robust and Nonlinear Control, 29(16), 5456–5480. https://doi.org/10.1002/rnc.v29.16
  • Rotondo, D., Nejjari, F., & Puig, V. (2013). Quasi-LPV modeling, identification and control of a twin rotor MIMO system. Control Engineering Practice, 21(6), 829–846. https://doi.org/10.1016/j.conengprac.2013.02.004
  • Rotondo, D., Nejjari, F., & Puig, V. (2014). A virtual actuator and sensor approach for fault tolerant control of LPV systems. Journal of Process Control, 24(3), 203–222. https://doi.org/10.1016/j.jprocont.2013.12.016
  • Rotondo, D., Puig, V., Nejjari, F., & Romera, J. (2015). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Transactions on Industrial Electronics, 62(6), 3932–3944. https://doi.org/10.1109/TIE.2014.2367002
  • Rotondo, D., Puig, V., Nejjari, F., & Witczak, M. (2015). Automated generation and comparison of Takagi–Sugeno and polytopic quasi-LPV models. Fuzzy Sets and Systems, 277, 44–64. https://doi.org/10.1016/j.fss.2015.02.002
  • Rotondo, D., Sánchez, H. S., Nejjari, F., & Puig, V. (2019). Analysis and design of linear parameter varying systems using LMIs. Revista Iberoamericana de Automatica e Informatica Industrial, 16(1), 1–14. https://doi.org/10.4995/riai.2018.10436
  • Sala, A., & Arino, C. (2007). Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem. Fuzzy Sets and Systems, 158(24), 2671–2686. https://doi.org/10.1016/j.fss.2007.06.016
  • Sanjuan, A., Rotondo, D., Nejjari, F., & Sarrate, R. (2019). An LMI-based heuristic algorithm for vertex reduction in LPV systems. International Journal of Applied Mathematics and Computer Science, 29(4), 725–737. https://doi.org/10.2478/amcs-2019-0054
  • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1–4), 625–653. https://doi.org/10.1080/10556789908805766
  • Sun, X.-D., & Postlethwaite, I. (1998, September 1–4). Affine LPV modelling and its use in gain-scheduled helicopter control. UKACC International Conference on Control '98 (Conf. Publ. No. 455), Swansea, UK. IET. https://doi.org/10.1049/cp:19980452
  • Tseng, C. S., Chen, B. S., & Uang, H. J. (2001). Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model. IEEE Transactions on Fuzzy Systems, 9(3), 381–392. https://doi.org/10.1109/91.928735
  • Vizer, D., & Mercere, G. (2014, June 24–27). H∞-based LPV model identification from local experiments with a gap metric-based operating point selection. European Control Conference (ECC), Strasbourg, France (pp. 388–393). IEEE. https://doi.org/10.1109/ECC.2014.6862462
  • Zribi, A., Chtourou, M., & Djemal, M. (2016). A systematic determination approach of model's base using gap metric for nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 138(3), 031008. https://doi.org/10.1115/1.4032222

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.