272
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exponential stability of integral time-varying delay system

, , &
Pages 3427-3436 | Received 25 Apr 2020, Accepted 24 Aug 2021, Published online: 09 Sep 2021

References

  • Balasubramaniam, P., Krishnasamy, R., & Rakkiyappan, R. (2013). Delay-dependent stability criterion for a class of non-linear singular Markovian jump systems with mode-dependent interval time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 17(9), 3612–3627. https://doi.org/10.1016/j.cnsns.2012.01.003
  • Balasubramaniam, P., Manivannan, A., & Rakkiyappan, R. (2010). Exponential stability results for uncertain neutral systems with interval time-varying delays and Markovian jumping parameters. Applied Mathematics and Computation, 216(11), 3396–3407. https://doi.org/10.1016/j.amc.2010.04.077
  • Balasubramaniama, P., Krishnasamya, R., & Rakkiyappan, R. (2011). Delay-interval-dependent robust stability results for uncertain stochastic systems with Markovian jumping parameters. Nonlinear Analysis. Hybrid Systems, 5(4), 681–691. https://doi.org/10.1016/j.nahs.2011.06.001
  • Bekiaris-Liberis, N., & Krstic, M. (2013). Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations. Automatica, 49(6), 1576–1590. https://doi.org/10.1016/j.automatica.2013.02.050
  • Chinnamuniyandi, M., Ramachandran, R., Cao, J. D., Rajchakit, G., & Li, X. D. (2018). A new global robust exponential stability criterion for H∞ control of uncertain stochastic neutral-type neural networks with both time-varying delays. International Journal of Control, Automation and Systems, 16(2), 726–738. https://doi.org/10.1007/s12555-017-0410-x
  • Daniel, M. A. (2016). New results on robust exponential stability of integral delay systems. International Journal of Systems Science, 47(8), 1905–1916. https://doi.org/10.1080/00207721.2014.958205
  • De Oliveira, F. S. S., & Souza, F. O. (2020). Improved delay-dependent stability criteria for linear systems with multiple time-varying delays. International Journal of Control. https://doi.org/10.1080/00207179.2020.1766116
  • Ding, S. B., Wang, Z. S., & Zhang, H. G. (2018). Wirtinger-based multiple integral inequality for stability of time-delay systems. International Journal of Control, 91(1), 12–18. https://doi.org/10.1080/00207179.2016.1266516
  • Engelborghs, K., Dambrine, M., & Roose, D. (2001). Limitations of a class of stabilization methods for delay systems. IEEE Transactions on Automatic Control, 46(2), 336–339. https://doi.org/10.1109/9.905705
  • Gu, K. (2012). A review of some subtleties of practical relevance for time-delay systems of neutral type. ISRN Applied Mathematics, 725783, pp. 46. https://doi.org/10.5402/2012/725783
  • Gu, K., & Niculescu, S. I. (2000). Additional dynamics in transformed time-delay systems. IEEE Transactions on Automatic Control, 45(3), 572–575. https://doi.org/10.1109/9.847747
  • Hale, J. K., & Verduyn-Lunel, S. M. (1993). Introduction to functional differential equations. Springer-Verlag.
  • Karafyllis, I., & Krstic, M. (2013). Delay-robustness of linear predictor feedback without restriction on delay rate. Automatica, 49(6), 1761–1767. https://doi.org/10.1016/j.automatica.2013.02.019
  • Kharitonov, V., & Melchor-Aguilar, D. (2000). On delay-dependent stability conditions. Systems & Control Letters, 40(1), 71–76. https://doi.org/10.1016/S0167-6911(00)00003-7
  • Kharitonov, V., & Melchor-Aguilar, D. (2002). On delay-dependent stability conditions for time-varying systems. Systems & Control Letters, 46(3), 173–180. https://doi.org/10.1016/S0167-6911(02)00124-X
  • Kharitonov, V., & Melchor-Aguilar, D. (2003). Additional dynamics for general class of time-delay systems. IEEE Transactions on Automatic Control, 48(6), 1060–1063. https://doi.org/10.1109/TAC.2003.813200
  • Krstic, M. (2010). Lyapunov stability of linear predictor feedback for time-varying input delay. IEEE Transactions on Automatic Control, 55(2), 554–559. https://doi.org/10.1109/TAC.2009.2038196
  • Kwon, O. M., Park, M. J., Park, J. H., Lee, S. M., & Cha, E. J. (2014). New and improved results on stability of static neural networks with interval time-varying delays. Applied Mathematics and Computation, 239, 346–357. https://doi.org/10.1016/j.amc.2014.04.089
  • Lakshmanan, S., Senthilkumar, T., & Balasubramaniam, P. (2011). Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations. Applied Mathematical Modelling, 35(11), 5355–5368. https://doi.org/10.1016/j.apm.2011.04.043
  • Li, Z. Y., Fang, R., & Wang, Y. (2017). Stability and robust stability of integral delay systems with multiple exponential kernels. IEEE Access, 5, 21650–21659. https://doi.org/10.1109/ACCESS.2017.2761352
  • Li, Z. Y., Zheng, C., & Wang, Y. (2016). Exponential stability analysis of integral delay systems with multiple exponential kernels. Journal of the Frankline Institute, 353(7), 1639–1653. https://doi.org/10.1016/j.jfranklin.2015.12.016
  • Li, Z. Y., Zhou, B., & Lin, Z. L. (2013). On exponential stability of integral delay systems. Automatica, 49(11), 3368–3376. https://doi.org/10.1016/j.automatica.2013.08.004
  • Maharajana, C., Raja, R., Cao, J. D., Rajchakit, G., & Alsaedi, A. (2018). Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays. Chaos, Solitons and Fractals, 115, 268–282. https://doi.org/10.1016/j.chaos.2018.07.008
  • Maharajana, C., Raja, R., Cao, J. D., Rajchakit, G., Tu, Z. W., & Alsaedi, A. (2018). LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: a non-fragile state estimation approach. Applied Mathematics and Computation, 326, 33–55. https://doi.org/10.1016/j.amc.2018.01.001
  • Mechor-Aguilar, D. (2010). On stability of integral delay systems. Applied Mathematics and Computation, 217, 3578–3584. https://doi.org/10.1016/j.amc.2010.08.058
  • Melchor-Aguilar, D. (2009). On the stability of AQM controllers supporting TCP Flows. In Topics in Time-Delay Systems (Vol. 388, pp. 269–279). Springer-Verlag.
  • Michiels, W., Mondié, S., Roose, D., & Dambrine, M. (2004). The effect of the approximating distributed delay control law on stability. In Advances of Time-Delay Systems Lecture Notes in Computational Science and Engineering (Vol. 38, pp. 207–220). Springer-Verlag.
  • Moezzia, K., Rodriguesb, L., & Aghdama, A. G. (2009). Stability of uncertain piecewise affine systems with time delay: delay-dependent Lyapunov approach. International Journal of Control, 82(8), 1423–1434. https://doi.org/10.1080/00207170802443699
  • Mondié, S., & Melchor-Aguilar, D. (2012). Exponential stability of integral delay systems with a class of analytic kernels. IEEE Transactions on Automatic Control, 57(2), 484–489. https://doi.org/10.1109/TAC.2011.2178653
  • Niculescu, S. I. (2007). Delay effects on stability: a robust control approach. Springer-Verlag.
  • Polyakov, A. (2012). Minimization of disturbances effects in time delay predictor-based sliding mode control systems. Journal of the Frankline Institute, 349(4), 1380–1396. https://doi.org/10.1016/j.jfranklin.2011.06.028
  • Saravanakumar, P., Rajchakit, G., Ahn, C. K., & Karimi, H. R. (2019). Exponential stability, passivity, and dissipativity analysis of generalized neural networks with mixed time-varying delays. IEEE Transactions On Systems, Man, and Cybernetics: Systems, 49(2), 395–405. https://doi.org/10.1109/TSMC.2017.2719899
  • Saravanakumar, R., Rajchakit, G., Syed Ali, M., & Joo, Y. H. (2019). Exponential dissipativity criteria for generalized BAM neural networks with variable delays. Neural Computing and Applications, 31, 2717–2726. https://doi.org/10.1007/s00521-017-3224-0
  • Syed Ali, M., & Balasubramaniam, P. (2010). Exponential stability of time-delay systems with nonlinear uncertainties. International Journal of Computer Mathematics, 87(6), 1363–1373. https://doi.org/10.1080/00207160802322324
  • Van Assche, V., Dambrine, M., Lafay, J. F., & Richard, J. P. (1999). Some problems arising in the implementation of distributed-delay control laws. Proceedings of the 38th IEEE Conference on Decision and Control. IEEE. https://doi.org/10.1109/CDC.1999.833279
  • Zhang, Z., Zhou, B., & Michiels, W. (2020). Pseudo predictor feedback stabilisation of linear systems with both state and input delays. International Journal of Control. https://doi.org/10.1080/00207179.2020.1752939
  • Zhou, B., & Li, Z. Y. (2016). Stability analysis of integral delay systems with multiple delays. IEEE Transactions on Automatic Control, 61(1), 188–193. https://doi.org/10.1109/TAC.2015.2426312
  • Zhou, B., Lin, Z., & Duan, G. (2020). Global and semi-global stabilization of linear systems with multiple delays and saturations in the input. SIAM Journal on Control and Optimization, 48(8), 5294–5332. https://doi.org/10.1137/090771673
  • Zhou, B., Lin, Z. L., & Duan, G. R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387–2399. https://doi.org/10.1016/j.automatica.2012.06.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.