326
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Passivity-based formation control for second-order multi-agent systems with linear or nonlinear coupling

, &
Pages 1190-1201 | Received 22 May 2021, Accepted 23 Jan 2022, Published online: 14 Feb 2022

References

  • Briñón-Arranz, L., Seuret, A., & Canudas-de-Wit, C. (2014). Cooperative control design for time-varying formations of multi-agent systems. IEEE Transactions on Automatic Control, 59(8), 2283–2288. https://doi.org/10.1109/TAC.2014.2303213
  • Carrillo, L. R. G., Russell, W. J., Hespanha, J. P., & Collins, G. E. (2015). State estimation of multiagent systems under impulsive noise and disturbances. IEEE Transactions on Control Systems Technology, 23(1), 13–26. https://doi.org/10.1109/TCST.2014.2309911
  • Chen, M., & Wang, X. (2020). Flocking dynamics for multi-agent system with measurement delay. Mathematics and Computers in Simulation, 171(10), 187–200. https://doi.org/10.1016/j.matcom.2019.09.015
  • Chopra, N. (2012). Output synchronization on strongly connected graphs. IEEE Transactions on Automatic Control, 57(11), 2896–2901. https://doi.org/10.1109/TAC.2012.2193704
  • Chopra, N., & Spong, M. W. (2006). Passivity-based control of multi-agent systems. In S. Kawamura & M. Svinin (Eds.), Advances in robot control: From everyday physics to human-like movements (pp. 107–134). Springer-Verlag.
  • Dong, X., & Hu, G. (2017). Time-varying output formation for linear multiagent systems via dynamic output feedback control. IEEE Transactions on Control of Network Systems, 4(2), 236–245. https://doi.org/10.1109/TCNS.2015.2489358
  • Egerstedt, M., & Hu, X. (2001). Formation constrained multi-agent control. IEEE Transactions on Robotics and Automation, 17(6), 947–951. https://doi.org/10.1109/70.976029
  • Ge, S. S., Liu, X., Goh, C. -H., & Xu, L. (2016). Formation tracking control of multiagents in constrained space. IEEE Transactions on Control Systems Technology, 24(3), 992–1003. https://doi.org/10.1109/TCST.2015.2472959
  • Ge, X., & Han, Q.-L. (2017). Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Transactions on Industrial Electronics, 64(10), 8118–8127. https://doi.org/10.1109/TIE.2017.2701778
  • Ivezic, N., Potok, T. E., & Pouchard, L. (1999). Multiagent framework for lean manufacturing. IEEE Internet Computing, 3(5), 58–59. https://doi.org/10.1109/4236.793459
  • Jin, X., Lü, S., Deng, C., & Chadli, M. (2021). Distributed adaptive security consensus control for a class of multi-agent systems under network decay and intermittent attacks. Information Sciences, 547(6), 88–102. https://doi.org/10.1016/j.ins.2020.08.013
  • Jing, G., Zheng, Y., & Wang, L. (2017). Consensus of multiagent systems with distance-dependent communication networks. IEEE Transactions on Neural Networks and Learning Systems, 28(11), 2712–2726. https://doi.org/10.1109/TNNLS.5962385
  • Li, Y., Huang, Y., Lin, P., & Ren, W. (2018). Distributed rotating consensus of second-order multi-agent systems with nonuniform delays. Systems & Control Letters, 117(5), 18–22. https://doi.org/10.1016/j.sysconle.2018.04.004
  • Li, Z., Duan, Z., Chen, G., & Huang, L. (2010). Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(9), 213–224. https://doi.org/10.1109/TCSI.2010.2043018
  • Lin, Z., Wang, L., Han, Z., & Fu, M. (2014). Distributed formation control of multi-agent systems using complex Laplacian. IEEE Transactions on Automatic Control, 59(7), 1765–1777. https://doi.org/10.1109/TAC.2014.2309031
  • Liu, Y., & Zhao, J. (2012). Generalized output synchronization of dynamical networks using output quasi-passivity. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(6), 1290–1298. https://doi.org/10.1109/TCSI.2011.2173391
  • Luo, S., Kim, J., Parasuraman, R., Bae, J. H., Matson, E. T., & Min, B.-C. (2019). Multi-robot rendezvous based on bearing-aided hierarchical tracking of network topology. Ad Hoc Networks, 86(2), 131–143. https://doi.org/10.1016/j.adhoc.2018.11.004
  • Ni, W., & Cheng, D. (2010). Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems & Control Letters, 59(3–4), 209–217. https://doi.org/10.1016/j.sysconle.2010.01.006
  • Qin, W., Liu, Z., & Chen, Z. (2014). Formation control for nonlinear multi-agent systems with linear extended state observer. IEEE/CAA Journal of Automatica Sinica, 1(2), 171–179. https://doi.org/10.1109/JAS.2014.7004547
  • Ren, S.-Y., Mao, R., & Wu, J. (2019). Passivity-based leader-following consensus control for nonlinear multi-agent systems with fixed and switching topologies. IEEE Transactions on Network Science and Engineering, 6(4), 844–856. https://doi.org/10.1109/TNSE.6488902
  • Wang, J.-L., & Wu, H.-N. (2012). Leader-following formation control of multi-agent systems under fixed and switching topologies. International Journal of Control, 85(6), 695–705. https://doi.org/10.1080/00207179.2012.662720
  • Wang, J.-L., Wu, H.-N., Huang, T., Ren, S.-Y., & Wu, J. (2017a). Passivity analysis of coupled reaction-diffusion neural networks with Dirichlet boundary conditions. IEEE Transactions on Systems, Man and Cybernetics: Systems, 47(8), 2148–2159. https://doi.org/10.1109/TSMC.2016.2622363
  • Wang, J.-L., Wu, H.-N., Huang, T., Ren, S.-Y., & Wu, J. (2017b). Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Transactions on Neural Networks and Learning Systems, 28(8), 1827–1839. https://doi.org/10.1109/TNNLS.2016.2558502
  • Wang, Q., Wang, J.-L., Wu, H.-N., & Huang, T. (2020). Consensus and H∞ consensus of nonlinear second-order multi-agent systems. IEEE Transactions on Network Science and Engineering, 7(3), 1251–1264. https://doi.org/10.1109/TNSE.6488902
  • Wang, R., Dong, X., Li, Q., & Ren, Z. (2019). Distributed time-varying formation control for linear swarm systems with switching topologies using an adaptive output-feedback approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(12), 2664–2675. https://doi.org/10.1109/TSMC.6221021
  • Wen, G., Chen, C. L. P., & Liu, Y.-J. (2018). Formation control with obstacle avoidance for a class of stochastic multiagent systems. IEEE Transactions on Industrial Electronics, 65(7), 5847–5855. https://doi.org/10.1109/TIE.2017.2782229
  • Xi, J., Wang, L., Zheng, J., & Yang, X. (2020). Energy-constraint formation for multiagent systems with switching interaction topologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(7), 2442–2454. https://doi.org/10.1109/TCSI.8919
  • Xue, D., Yao, J., Wang, J., Guo, Y., & Han, X. (2013). Formation control of multi-agent systems with stochastic switching topology and time-varying communication delays. IET Control Theory & Applications, 7(13), 1689–1698. https://doi.org/10.1049/cth2.v7.13
  • Yu, H., & Antsaklis, P. J. (2014). Output synchronization of networked passive systems with event-driven communication. IEEE Transactions on Automatic Control, 59(3), 750–756. https://doi.org/10.1109/TAC.2013.2274704
  • Zhao, S., & Zelazo, D. (2017). Translational and scaling formation maneuver control via a bearing-based approach. IEEE Transactions on Control of Network Systems, 4(3), 429–438. https://doi.org/10.1109/TCNS.2015.2507547
  • Zou, Y., Zhou, Z., Dong, X., & Meng, Z. (2018). Distributed formation control for multiple vertical takeoff and landing UAVs with switching topologies. IEEE/ASME Transactions on Mechatronics, 23(4), 1750–1761. https://doi.org/10.1109/TMECH.3516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.