329
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Uncertainty and disturbance-observer based robust attitude control for satellites

& ORCID Icon
Pages 1245-1260 | Received 21 Jan 2021, Accepted 31 Jan 2022, Published online: 24 Feb 2022

References

  • Abbas, M. A., & Eklund, J. M. (2011, May 8–11). Attitude determination and control sub-system satellite controller. 24th Canadian Conference of Electrical and Computer Engineering, Niagara Falls, ON (pp. 1–6). IEEE. https://doi.org/10.1109/CCECE.2011.6030701
  • Balochian, S., & Asaee, A. (2012). Controlling the micro satellite with adaptive and PID controllers and their function comparison. Advances in Mechanical Engineering and its Applications, 1(3), 53–64. https://doi.org/10.1109/ICED.2008.4786737
  • Bansal, A., & Sharma, V. (2013). Design and analysis of robust H-infinity controller. Control Theory and Informatics, IISTE, National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering, 3(2), 7–14.
  • Cheng, C.-H., Shu, S.-L., & Cheng, P.-J. (2009). Attitude control of a satellite using fuzzy controllers. Expert Systems with Applications, 36(3), 6613–6620. https://doi.org/10.1016/j.eswa.2008.08.053
  • Chobotov, V. A. (1991). Spacecraft attitude dynamics and control. Krieger Publishing Company, ch-1 and 4.
  • Dechao, R., Tao, S., Lu, C., & Xiaoqian, C. (2013). Attitude control system design and on-orbit performance analysis of nano-satellite -- "Tian Tuo 1". Chinese Journal of Aeronautics, 27(3), 593–601. https://doi.org/10.1016/j.cja.2013.11.001
  • Eze, U. E., Mbaocha, C. C., & Onojo, J. O. (2016). Design of linear quadratic regulator for the three-axis attitude control system stabilization of microsatellites. International Journal of Scientific & Engineering Research, 7(6), 834–845.
  • Foreman, V. L., Le, M. J., & De, W. O. L. (2016, September 13). A survey of cost estimating methodologies for distributed spacecraft missions. AIAA SPACE Forum, Long Beach, CA (pp. 1–17, Patent: GSFC-E-DAA-TN35636-2). AIAA.
  • Godbole, A. A., Kolhe, J. P., & Talole, S. E. (2013). Performance analysis of generalized extended state observer in tackling sinusoidal disturbances. Control Systems Technology, 21(6), 2212–2223. https://doi.org/10.1109/TCST.2012.2231512
  • Hasan, S. K. (2009). PID controller design for the satellite attitude control system. Journal of Engineering, 15(1), 3312–3320.
  • Ivanov, D., Koptev, M., Mashtakov, Y., Ovchinnikov, M., Proshunin, N., Tkachev, S., Fedoseev, A., & Shachkov, M. (2017). Determination of disturbances acting on small satellite mock-up on air bearing table. Acta Astronautica, 142, 265–276. https://doi.org/10.1016/j.actaastro.2017.11.010
  • Kodhanda, A., Ali, N., Sucheendran, M. M., & Talole, S. E. (2017). Robust control of nonlinear resonance in a clamped rectangular plate. Journal of Vibration and Control, 24(18), 4176–4194. https://doi.org/10.1177/2F1077546317721419
  • Kolhe, J. P., Shaheed, M., Chandar, T. S., & Talole, S. E. (2011). Robust control of robot manipulators based on uncertainty and disturbance estimation. International Journal of Robust and Nonlinear Control, 23(1), 104–122. https://doi.org/10.1002/rnc.1823
  • Kumar, S., & Chakraborty, S. (2020). Design, validation, ad comparison of UDE-based pitch-axis control of helicopter with existing conventional and non-conventional controllers. Arabian Journal for Science and Engineering, 46(2), 909–929. https://doi.org/10.1007/s13369-020-04775-1
  • Kumar, S., Varma, M. S., Rao, A. D., & Agrawal, V. K. (2016). H∞ tracking control of magnetically controlled Nano-satellite. International Federation of Automatic Control, 49(1), 166–172. https://doi.org/10.1016/j.ifacol.2016.03.047
  • Kumar, S. S., Shreesha, C., & Philip, N. K. (2018). Robust PID controller design for rigid uncertain spacecraft using kharitonov theorem and vectored particle swarm optimization. International Journal of Engineering and Technology, 7(2), 9–14. https://doi.org/10.14419/ijet.v7i2.21.11825
  • Kuperman, A. (2016). Uncertainty and disturbance estimator - assisted control of a two-axis active magnetic bearing. Transactions of the Institute of Measurement and Control, 38(6), 764–772. https://doi.org/10.1177/0142331216634426
  • Kuperman, A., & Zhong, Q.-C. (2015). UDE-based linear robust control for a class of nonlinear systems with application to wing rock motion stabilization. Nonlinear Dynamics, 81(1–2), 789–799. https://doi.org/10.1007/s11071-015-2029-x
  • Liu, C., Shi, K., Yue, X., & Sun, Z. (2020). Inertia-free saturated output feedback attitude stabilization for uncertain spacecraft. International Journal of Robust and Nonlinear Control, 30(13), 5101–1521. https://doi.org/10.1002/rnc.5044
  • Liu, C., Yue, X., Shi, K., & Sun, Z. (2019). Inertia-free attitude stabilization for flexible spacecraft with active vibration suppression. International Journal of Robust and Nonlinear Control, 29(18), 6311–6336. https://doi.org/10.1002/rnc.4742
  • Mbaocha, C. C., Eze, C. U., Ezenugu, I. A., & Onwumere, J. C. (2016). Satellite model for yaw-axis determination and control using PID compensator. International Journal of Scientific & Engineering Research, 7(7), 1623–1629.
  • Mohsenipour, R., Nemati, H., Nasirian, M., & Nia, A. K. (2013). Attitude control of a flexible satellite by using robust control design methods. Intelligent Control and Automation, 4(3), 313–326. https://doi.org/10.4236/ica.2013.43037
  • Nag, S., Moigne, J. L., & Weck, O. D. (2014, March 1–8). Cost and risk analysis of small satellite constellations for earth observation. IEEE Aerospace Conference, Big Sky, MT (pp. 1–16). IEEE. https://doi.org/10.1109/AERO.2014.6836396
  • Navabi, M., Nasiri, N., & Dehghan, M. (2012). Modeling and numerical simulation of linear and nonlinear spacecraft attitude dynamics and gravity gradient moments: A comparative study. Communications in Nonlinear Science and Numerical Simulation, 17(2), 1065–1084. https://doi.org/10.1016/j.cnsns.2011.06.035
  • Nguyen, T., Cahoy, K., & Marinan, A. (2018). Attitude determination for small satellites with infrared earth horizon sensors. Journal of Spacecraft and Rockets, 55(6), 1466–1475. https://doi.org/10.2514/1.A34010
  • Nijmeijer, H., & Schaft, A. V. D. (1990). Nonlinear dynamical control systems. Springer-Verlag.
  • Nomura, S., Ikari, S., & Nakasuka, S. (2016). Three-axis attitude maneuver of spacecraft by reaction wheels with rotation speed constraints. International Federation of Automatic Control, 47(17), 130–134. https://doi.org/10.1016/j.ifacol.2016.09.023
  • Nudehi, S. S., Farooq, U., Alasty, A., & Issa, J. (2008, June 11–13). Satellite attitude control using three reaction wheels. American Control Conference, Seattle, WA. IEEE. https://doi.org/10.1109/ACC.2008.4587262
  • Ovchinnikov, M. Y., & Roldugin, D. S. (2019). A survey on active magnetic attitude control algorithms for small satellites. Progress in Aerospace Sciences, 190, 1–17. https://doi.org/10.1016/j.paerosci.2019.05.006
  • Pinherio, E. R., & Souza, L. C. G. D. (2013). Design of the microsatellite attitude control system using the mixed H2/H∞ method via LMI optimization. Mathematical Problems in Engineering, 2013, 257193. https://doi.org/10.1155/2013/257193
  • Reichel, F., Bangert, P., Busch, S., Ravandoor, K., & Schilling, K. (2013). The attitude determination and control system of the Picosatellite UWE-3*. IFAC symposium on Automatic Control in Aerospace. Germany, 46(19), 271–276. https://doi.org/10.3182/20130902-5-DE-2040.00088
  • Reyhanoglu, M., & Drakunov, S. (2009, November 10–13). Attitude stabilization of small satellites using only magnetic actuation. Annual Conference of IEEE Industrial Electronics, Orlando, FL (pp. 103–107). IEEE. https://doi.org/10.1109/IECON.2008.4757936
  • Sanyal, A. K., & Lee-Ho, Z. (2009, August 10–13). Attitude tracking control of a small satellite in low earth orbit. AIAA Guidance, Navigation and Control Conference, Chicago, IL (pp. 1–14). https://doi.org/10.2514/6.2009-5902
  • Sanz, R., Garcia, P., Zhong, Q.-C., & Albertos, P. (2016). Robust control of quadrotors based on an uncertainty and disturbance estimator. Journal of Dynamic Systems Measurement and Control, 138(7), 1–16. https://doi.org/10.1115/1.4033315
  • Shi, K., Liu, C., & Sun, Z. (2019). Constrained fuel-free control for spacecraft electromagnetic docking in elliptical orbits. Acta Astronautica, 162, 14–24. https://doi.org/10.1016/j.actaastro.2019.05.016
  • Shi, K., Liu, C., Sun, Z., & Yue, X. (2020). Disturbance observer-based attitude stabilization for rigid spacecrafts with input MRCs. Advances in Space Research, 66(3), 689–701. https://doi.org/10.1016/j.asr.2020.04.016
  • Shi, K., Liu, C., Sun, Z., & Yue, X. (2022). Disturbed orbit-attitude dynamics and trajectory tracking control for spacecraft electromagnetic docking. Attitude Mathematical Modelling, 101, 553–572. https://doi.org/10.1016/j.apm.2021.08.030
  • Stesina, F., Corpino, S., Mozzillo, R., & Obiols-Rabasa, G. (2012). Design of the active attitude determination and control system for the E-ST@R CUBESAT. 63rd International Astronautical Congress, Naples, Italy. http://porto.polito.it/2503388/
  • Talole, S. E., Chandar, T. S., & Kolhe, J. P. (2011). Design and experimental validation of UDE based controller-observer structure for robust input-output linearisation. International Journal of Control, 84(5), 969–984. https://doi.org/10.1080/00207179.2011.584352
  • Wertz, J. R. (2002). Modeling the space environment. In J. R. Wertz (Ed.), Spacecraft attitude determination and control (Vol. 73, Astrophysics and Space Science Library, pp. 113–152. Springer.
  • Wie, B. (2008). Space vehicle synamics and control (2nd ed.). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.860119
  • Wu, Q., & Saif, M. (2009). Model-based robust fault diagnosis for satellite control systems using learning and sliding mode approaches. Journal of Computers, 4(10), 1022–1032.
  • Yamashita, T., Ogura, N., Kurii, T., & Hashimoto, T. (2004). Improved satellite attitude control using a disturbance compensator. Acta Astronautica, 55(1), 15–25. https://doi.org/10.1016/j.actaastro.2004.02.004
  • Yang, C.-D., & Sun, Y.-P. (2002). Mixed H2/H2 state-feedback design for microsatellite attitude control. Control Engineering Practice, 10(9), 951–970. https://doi.org/10.1016/S0967-0661(02)00049-7
  • Yang, Y., Du, J., Liu, H., Guo, C., & Abraham, A. (2013). A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Transactions on Control Systems Technology, 22(4), 1511–1518. https://doi.org/10.1109/TCST.2013.2281936
  • Yi, X., and Anvar, A. (2013, December 1–6). Small-satellite magnetorquer attitude control system modelling and simulation. 20th International Congress on Modelling and Simulation, Adelaide, Australia (pp. 984–990). https://doi.org/10.36334/modsim.2013.c10.yi
  • Yousefian, P., & Salarieh, H. (2017). Nonlinear control of sway in a tethered satellite system via attitude control of the main satellite. Aerospace Science and Technology, 63, 317–327. https://doi.org/10.1016/j.ast.2016.12.023
  • Zhong, Q. C., & Rees, D. (2004). Control of uncertain LTI systems based on an uncertainty and disturbance estimator. ASME Journal of Dynamic Systems Measurement and Control, 126(4), 905–910. https://doi.org/10.1115/1.1850529

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.