137
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Decomposable dissipativity and stability analysis of hybrid systems

, ORCID Icon &
Pages 1288-1297 | Received 22 Sep 2021, Accepted 27 Dec 2021, Published online: 14 Mar 2022

References

  • Agarwal, E., McCourt, M. J., & Antsaklis, P. J. (2017). Dissipativity of finite and hybrid automata: An overview. In 25th Mediterranean Conference on Control and Automation (pp. 1176–1182). IEEE.
  • Bemporad, A., Bianchini, G., & Brogi, F. (2008). Passivity analysis and passification of discrete-time hybrid systems. IEEE Transactions on Automatic Control, 53(4), 1004–1009. https://doi.org/10.1109/TAC.2008.919564
  • Brodtkorb, A. H., Værnø, S. A., Teel, A. R., Sørensen, A. J., & Skjetne, R. (2018). Hybrid controller concept for dynamic positioning of marine vessels with experimental results. Automatica, 93, 489–497. https://doi.org/10.1016/j.automatica.2018.03.047
  • Brogliato, B., Lozano, R., Maschke, B., & Egeland, O. (2007). Dissipative systems analysis and control. Springer.
  • Byrnes, C. I., & Lin, W. (1994). Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear systems. IEEE Transactions on Automatic Control, 39(1), 83–98. https://doi.org/10.1109/TAC.9
  • Cai, C., & Teel, A. R. (2009). Characterizations of input-to-state stability for hybrid systems. Systems & Control Letters, 58(1), 47–53. https://doi.org/10.1016/j.sysconle.2008.07.009
  • Cai, C., & Teel, A. R. (2011). Output-to-state stability for hybrid systems. Systems & Control Letters, 60(1), 62–68. https://doi.org/10.1016/j.sysconle.2010.10.007
  • Chang, Y., Zhou, P., Niu, B., Wang, H., Xu, N., Alassafi, M. O., & Ahmad, A. M. (2021). Switched-observer-based adaptive output-feedback control design with unknown gain for pure-feedback switched nonlinear systems via average dwell time. International Journal of Systems Science, 52(9), 1731–1745. https://doi.org/10.1080/00207721.2020.1863503
  • Chen, H., Shi, P., & Lim, C. C. (2017). Stability of neutral stochastic switched time delay systems: An average dwell time approach. IEEE Transactions on Automatic Control, 27(3), 512–532. https://doi.org/10.1002/rnc.3588
  • Dhople, S. V., Chen, Y. C., Deville, L., & Dominguez-Garcia, A. D. (2013). Analysis of power system dynamics subject to stochastic power injections. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(12), 3341–3353. https://doi.org/10.1109/TCSI.2013.2265972
  • Goebel, R., Sanfelice, R. G., & Teel, A. R. (2009). Hybrid dynamical systems. IEEE Control Systems Magazine, 29(2), 28–93. https://doi.org/10.1109/MCS.2008.931718
  • Goedel, R., Sanfelice, R. G., & Teel, A. R. (2012). Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press.
  • Haddad, W. M., Chellaboina, V., & Nersesov, S. G. (2006). Impulsive and hybrid dynamical systems: Stability, dissipativity, and control. Princeton University Press.
  • Huo, X., Karimi, H. R., Zhao, X., Wang, B., & Zong, G. (2021). Adaptive critic design for decentralized event-triggered control of constrained nonlinear interconnected systems within an identifier-critic framework. IIEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2020.3037321.
  • Jin, C. L., Li, L. L., Wang, R., & Wang, Q. G. (2021). Output regulation for stochastic delay systems under asynchronous switching with dissipativity. International Journal of Control, 94(2), 548–557. https://doi.org/10.1080/00207179.2019.1600030
  • Li, Y., Niu, B., Zong, G., Zhao, J., & Zhao, X. (2022). Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full state constraints and asymmetric input saturation. International Journal of Systems Science, 53(1), 199–221. https://doi.org/10.1080/00207721.2021.1943562
  • Liu, B., & Hill, D. J. (2011). Decomposable dissipativity and related stability for discrete-time switched systems. IEEE Transactions on Automatic Control, 57(7), 1666–1671. https://doi.org/10.1109/TAC.2011.2121430
  • Liu, B., Hill, D. J., & Sun, Z. J. (2015). Mixed K-dissipativity and stabilization to ISS for impulsive hybrid systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8), 791–795. https://doi.org/10.1109/TCSII.2015.2415291
  • Ma, L., Xu, N., Zhao, X., & Zong, G. (2021). Small-gain technique based adaptive neural output-feedback fault-tolerant control of switched nonlinear systems with unmodeled dynamics. IEEE Transactions on Systems, Man and Cybernetics: Systems, 51(11), 7051–7062. https://doi.org/10.1109/TSMC.2020.2964822
  • Naldi, R., & Sanfelice, R. G. (2013). Passivity-based control for hybrid systems with applications to mechanical systems exhibiting impacts. Automatica, 49(5), 1104–1116. https://doi.org/10.1016/j.automatica.2013.01.018
  • Naldi, R., & Sanfelice, R. G. (2014). Sufficient conditions for passivity and stability of interconnections of hybrid systems using sums of storage functions. In Proceedings of the American Control Conference (pp. 1432–1437). IEEE.
  • Navarro-Lopez, E. M., & Laila, D. S. (2013). Group and total dissipativity and stability of multi-equilibria hybrid automata. IEEE Transactions on Automatic Control, 58(12), 3196–3202. https://doi.org/10.1109/TAC.2013.2261185
  • Nešić, D., Teel, A. R., Valmorbida, G., & Zaccarian, L. (2013). Finite-gain Lp stability for hybrid dynamical systems. Automatica, 49(8), 2384–2396. https://doi.org/10.1016/j.automatica.2013.05.003
  • Papachristodoulou, A., & Prajna, S. (2009). Robust stability analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control, 54(5), 1035–1041. https://doi.org/10.1109/TAC.2009.2017155
  • Ren, Y., Wang, W., Wang, Y., & Zhou, W. (2020). Exponentially incremental dissipativity for nonlinear stochastic switched systems. International Journal of Control, 93(5), 1074–1087. https://doi.org/10.1080/00207179.2018.1490033
  • Sanfelice, R. G. (2014). Input-output-to-state stability tools for hybrid systems and their interconnections. IEEE Transactions on Automatic Control, 59(5), 1360–1366. https://doi.org/10.1109/TAC.9
  • Song, M., Tarn, T. J., & Xi, N. (2000). Integration of task scheduling, action planning, and control in robotic manufacturing systems. Proceedings of the IEEE, 88(7), 1097–1107. https://doi.org/10.1109/5.871311
  • Tabbara, M., & Nesic, D. (2008). Input-output stability with input-to-state stable protocols for quantised and networked control systems. In Proceedings of the IEEE Conference on Decision and Control (pp. 2680–2685). IEEE.
  • Teel, A. R. (2010). Asymptotic stability for hybrid systems via decomposition, dissipativity, and detectability. In 49th IEEE Conference on Decision and Control (CDC) (pp. 7419–7424). IEEE.
  • Teel, A. R., Forni, F., & Zaccarian, L. (2013). Lyapunov-based sufficient conditions for exponential stability in hybrid systems. IEEE Transactions on Automatic Control, 58(6), 1591–1596. https://doi.org/10.1109/TAC.2012.2228039
  • Willems, J. C. (1972a). Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis, 45(5), 321–351. https://doi.org/10.1007/BF00276493
  • Willems, J. C. (1972b). Dissipative dynamical systems part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis, 45(5), 352–393. https://doi.org/10.1007/BF00276494
  • Xu, N., Zhao, X., Zong, G., & Wang, Y. (2021). Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance. Applied Mathematics and Computation, 408(9), Article 126344. https://doi.org/10.1016/j.amc.2021.126344
  • Zhang, H., Wang, H., Niu, B., Zhang, L., & Ahmad, A. M. (2021). Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time. Information Sciences, 580(126344), 756–774. https://doi.org/10.1016/j.ins.2021.08.062
  • Zhang, H., Xu, N., Zong, G., & Alkhateeb, A. (2021). Adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with actuator faults. IEEE Transactions on Automatic Control, 52(8), 1499–1514. https://doi.org/10.1080/00207721.2020.1831645
  • Zhao, J., & Hill, D. J. (2008). Passivity and stability of switched systems: A multiple storage function method. Systems & Control Letters, 57(2), 158–164. https://doi.org/10.1016/j.sysconle.2007.08.011
  • Zhao, X., Shi, P., Yin, Y., & Nguang, S. K. (2017). New results on stability of slowly switched systems: A multiple discontinuous Lyapunov function approach. IEEE Transactions on Automatic Control, 62(7), 3502–3509. https://doi.org/10.1109/TAC.2016.2614911
  • Zhao, X., Yin, S., Li, H., & Niu, B. (2015). Switching stabilization for a class of slowly switched systems. IEEE Transactions on Automatic Control, 60(1), 221–226. https://doi.org/10.1109/TAC.2014.2322961

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.