438
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Nonlinear disturbance observer-based direct joint control for manipulation of a flexible payload with output constraints

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1377-1388 | Received 20 Jul 2021, Accepted 20 Feb 2022, Published online: 11 Mar 2022

References

  • Al-Yahmadi, A. S., Abdo, J., & Hsia, T. C. (2007). Modeling and control of two manipulators handling a flexible object. Journal of the Franklin Institute, 344(5), 349–361. https://doi.org/10.1016/j.jfranklin.2006.01.002
  • Bortolini, M., Faccio, M., Galizia, F. G., Gamberi, M., & Pilati, F. (2020). Design, engineering and testing of an innovative adaptive automation assembly system. Assembly Automation, 40(3), 531–540. https://doi.org/10.1108/AA-06-2019-0103
  • Cao, F., & Liu, J. (2017). Vibration control for a rigid-flexible manipulator with full state constraints via barrier Lyapunov function. Journal of Sound and Vibration, 406(4), 237–252. https://doi.org/10.1016/j.jsv.2017.05.050
  • Chen, W. (2003). Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. Journal of Guidance, Control, and Dynamics, 26(1), 161–166. https://doi.org/10.2514/2.5027
  • Chen, W., Ballance, D. J., Gawthrop, P. J., Gribble, J. J., & O'Reilly, J. (1999, December 7–10). A nonlinear disturbance observer for two link robotic manipulators. Proceedings of the 38th IEEE Conference on Decision and Control.
  • Chen, W., Ballance, D. J., Gawthrop, P. J., & O'Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47(4), 932–938. https://doi.org/10.1109/41.857974
  • Cui, C., Wang, B., Zhao, Y., Zhang, Y., & Xue, L. (2020). Risk management for mine closure: A cloud model and hybrid semi-quantitative decision method. Journal of Minerals, Metallurgy and Materials, 27(8), 1021–1035. https://doi.org/10.1007/s12613-020-2002-7
  • Ding, L., Li, S., Gao, H., Chen, C., & Deng, Z. (2020). Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7), 2512–2523. https://doi.org/10.1109/TSMC.6221021
  • Endo, T., Matsuno, F., & Jia, Y. (2017). Boundary cooperative control by flexible Timoshenko arms. Automatica, 81(7), 377–380. https://doi.org/10.1016/j.automatica.2017.04.017
  • He, W., Ge, S. S., & Huang, D. (2015). Modeling and vibration control for a nonlinear moving string with output constraint. IEEE/ASME Transactions on Mechatronics, 20(4), 1886–1897. https://doi.org/10.1109/TMECH.2014.2358500
  • He, W., Nie, S., Meng, T., & Liu, Y. (2017). Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Transactions on Control Systems Technology, 25(3), 1036–1043. https://doi.org/10.1109/TCST.2016.2577001
  • Ji, N., & Liu, J. (2019). Adaptive neural network control for a nonlinear Euler-Bernoulli beam in three-dimensional space with unknown control direction. International Journal of Robust and Nonlinear Control, 29(13), 4494–4514. https://doi.org/10.1002/rnc.v29.13
  • Ji, N., Liu, J., & Yang, H. (2021). Boundary vibration suppression for a flexible three-dimensional marine riser against unknown sensor and actuator faults. International Journal of Robust and Nonlinear Control, 31(5), 1438–1451. https://doi.org/10.1002/rnc.v31.5
  • Lee, H., & Liang, Y. (2007). A coupled-sliding-surface approach for the robust trajectory control of a horizontal two-link rigid/flexible robot. International Journal of Control, 80(12), 1880–1892. https://doi.org/10.1080/00207170701383806
  • Li, X., Liu, Y., Li, J., & Xu, Z. (2021). Adaptive output-feedback stabilization for PDE-ODE cascaded systems with unknown control coefficient and spatially varying parameter. Journal of Systems Science and Complexity, 34(1), 298–313. https://doi.org/10.1007/s11424-020-9159-z
  • Lin, H., Zhao, B., Liu, D., & Alippi, C. (2020). Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks. IEEE/CAA Journal of Automatica Sinica, 7(4), 954–964. https://doi.org/10.1109/JAS.6570654
  • Liu, L., Liu, Y., Li, D., Tong, S., & Wang, Z. (2020). Barrier lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system. IEEE Transactions on Cybernetics, 50(8), 3491–3502. https://doi.org/10.1109/TCYB.6221036
  • Liu, L., Liu, Y., Tong, S., & Chen, P. (2020). Integral barrier lyapunov function based adaptive control for switched nonlinear systems. Science China Information Sciences, 63(3), 132203:1–132203:14. https://doi.org/10.1007/s11432-019-2714-7
  • Liu, S., Langari, R., & Li, Y. (2019). Nonlinear direct joint control for manipulator handling a flexible payload with input constraints. International Journal of Robotics and Automation, 34(6), 645–653. https://doi.org/10.2316/J.2019.206-0161
  • Liu, Y., Chen, X., Mei, Y., & Wu, Y. (2022). Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. Science China Information Sciences, 65(3), 139203:1–139203:3. https://doi.org/10.1007/s11432-019-2893-y.
  • Liu, Y., & Sun, D. (2000). Stabilizing a flexible beam handled by two manipulators via PD feedback. IEEE Transactions on Automatic Control, 45(11), 2159–2164. https://doi.org/10.1109/9.887656
  • Liu, Z., Han, Z., Zhao, Z., & He, W. (2021). Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Science China Information Sciences, 64(5), 152208:1–152208:16. https://doi.org/10.1007/s11432-020-3109-x
  • Liu, Z., He, X., Zhao, Z., Ahn, C., & Li, H. (2021). Vibration control for spatial aerial refueling hoses with bounded actuators. IEEE Transactions on Industrial Electronics, 68(5), 4209–4217. https://doi.org/10.1109/TIE.41
  • Liu, Z., Liu, J., & He, W. (2017). Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica, 77(3), 302–320. https://doi.org/10.1016/j.automatica.2016.11.002
  • Liu, Z., Liu, J., & He, W. (2018). Dynamic modeling and vibration control for a nonlinear 3-dimensional flexible manipulator. International Journal of Robust and Nonlinear Control, 28(13), 3927–3945. https://doi.org/10.1002/rnc.v28.13
  • Luo, Z., Guo, B., & Morgul, O. (1999). Stability and stabilization of infinite dimensional systems with applications (pp. 157–161). Springer.
  • Meng, T., He, W., & He, X. (2021). Tracking control of a flexible string system based on iterative learning control. IEEE Transactions on Control System Technology, 29(1), 436–443. https://doi.org/10.1109/TCST.87
  • Mohammadi, A., Marquez, H. J., & Tavakoli, M. (2011, June 5–9). Disturbance observer-based trajectory following control of nonlinear robotic manipulators. Proceedings of the 23rd CANCAM.
  • Pazy, A. (1983). Semigrouops of linear operators and applications to partial differential equations (pp. 14–15). Springer.
  • Qi, N., Yuan, Q., Liu, Y., Huo, M., & Cao, S. (2019). Consensus vibration control for large flexible structures of spacecraft with modified positive position feedback control. IEEE Transactions on Control System Technology, 27(4), 1712–1719. https://doi.org/10.1109/TCST.87
  • Rauscher, F., & Sawodny, O. (2021). Modeling and control of tower cranes with elastic structure. IEEE Transactions on Control System Technology, 29(1), 64–79. https://doi.org/10.1109/TCST.87
  • Ren, Y., Chen, M., & Liu, J. (2020). Bilateral coordinate boundary adaptive control for a helicopter lifting system with backlash-like hysteresis. SCIENCE CHINA Information Sciences, 63(1), 119203:1–119203:3. https://doi.org/10.1007/s11432-018-9636-3
  • Sun, C., He, W., & Hong, J. (2017). Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(8), 1863–1874. https://doi.org/10.1109/TSMC.2016.2562506
  • Tavasoli, A., Eghtesad, M., & Jafarian, H. (2009). Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam. Robotics and Autonomous Systems, 57(2), 212–221. https://doi.org/10.1016/j.robot.2008.04.003
  • Tee, K. P., Ge, S. S., & Tay, E. H. (2009). Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4), 918–927. https://doi.org/10.1016/j.automatica.2008.11.017
  • Wang, F., & Gao, Y. (2003). Advanced studies of flexible robotic manipulators: Modeling, design, control and application. World Scientific.
  • Wang, J., Liu, Y., & Sun, C. (2019). Adaptive neural boundary control design for nonlinear flexible distributed parameter systems. IEEE Transactions on Control System Technology, 27(5), 2085–2099. https://doi.org/10.1109/TCST.87
  • Wu, J., & Shang, Y. (2019). Exponential stability of the Euler-Bernoulli beam equation with external disturbance and output feedback time-delay. Journal of Systems Science and Complexity, 32(2), 542–556. https://doi.org/10.1007/s11424-018-7182-0
  • Xing, X., & Liu, J. (2019). LMI-based boundary and distributed control design for a flexible string subject to disturbance. International Journal of Control, 92(8), 1959–1969. https://doi.org/10.1080/00207179.2017.1423392
  • Xing, X., & Liu, J. (2019). Modeling and robust adaptive iterative learning control of a vehicle-based flexible manipulator with uncertainties. International Journal of Robust and Nonlinear Control, 29(8), 2385–2405. https://doi.org/10.1002/rnc.v29.8
  • Yang, H., & Liu, J. (2019). Active vibration control for a flexible-link manipulator with input constraint based on a disturbance observer. Asian Journal of Control, 21(2), 847–855. https://doi.org/10.1002/asjc.v21.2
  • Zeng, C., Yang, C., & Chen, Z. (2020). Bio-Inspired robotic impedance adaptation for human-robot collaborative tasks. Science China Information Sciences, 63(7), 170201:1–170201:10. https://doi.org/10.1007/s11432-019-2748-x
  • Zhang, L., & Liu, J. (2013). Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. IET Control Theory and Applications, 7(1), 43–51. https://doi.org/10.1049/cth2.v7.1
  • Zhang, P., & Li, Y. (2008). Modeling and control for the system of two manipulators in handling flexible payload based on hinge configuration. Journal of Jilin University (Engineering and Technology Edition), 38(2), 444–448. 10.13229/j.cnki.jdxbgxb2008.02.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.