221
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Practical finite-time adaptive sliding mode control for 5-link biped robot in the presence of uncertainty

, , ORCID Icon, &
Pages 1989-2002 | Received 25 Jun 2021, Accepted 15 May 2022, Published online: 31 May 2022

References

  • Uncategorized References
  • Abooee, A., Arefi, M. M., Sedghi, F., & Abootalebi, V. (2019). Robust nonlinear control schemes for finite-time tracking objective of a 5-DOF robotic exoskeleton. International Journal of Control, 92(9), 2178–2193. https://doi.org/10.1080/00207179.2018.1430379
  • Ahmed, S., Wang, H., & Tian, Y. (2016, July 27–29). Modification to model reference adaptive control of 5-link exoskeleton with gravity compensation. 2016 35th Chinese Control Conference (CCC).
  • Aldair, A. A., Rashid, A. T., Rashid, M. T., & Alsaedee, E. B. (2019). Adaptive fuzzy control applied to seven-link biped robot using ant colony optimization algorithm. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(4), 797–811. https://doi.org/10.1007/s40998-019-00201-x
  • Baek, J., Jin, M., & Han, S. (2016). A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Transactions on Industrial Electronics, 63(6), 3628–3637. https://doi.org/10.1109/TIE.2016.2522386
  • Cao, Y., & Song, Y.-D. (2020). Adaptive PID-like fault-tolerant control for robot manipulators with given performance specifications. International Journal of Control, 93(3), 377–386. https://doi.org/10.1080/00207179.2018.1468928
  • Doosti, P., Mahjoob, M., & Dadashzadeh, B. (2019). Finite-time control strategy for the running of a telescopic leg biped robot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(4), 196. https://doi.org/10.1007/s40430-019-1697-8
  • Ge, S. S., Li, Z., & Yang, H. (2011). Data driven adaptive predictive control for holonomic constrained under-actuated biped robots. IEEE Transactions on Control Systems Technology, 20(3), 787–795. https://doi.org/10.1109/TCST.2011.2145378
  • Ghasemi, H., Rezaie, B., & Rahmani, Z. (2018). Terminal sliding mode control with evolutionary algorithms for finite-time robust tracking of nonholonomic systems. Journal of Information Technolog and Control, 47(1), 26–44. https://doi.org/10.5755/j01.itc.47.1.15031
  • Heydari, R., & Farrokhi, M. (2017). Robust model predictive control of biped robots with adaptive on-line gait generation. International Journal of Control, Automation and Systems, 15(1), 329–344. https://doi.org/10.1007/s12555-014-0363-2
  • Hu, Q. (2009). Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dynamics, 55(4), 301–321. https://doi.org/10.1007/s11071-008-9363-1
  • Janardhan, V., & Kumar, R. P. (2017). Online trajectory generation for wide ditch crossing of biped robots using control constraints. Robotics and Autonomous Systems, 97, 61–82. https://doi.org/10.1016/j.robot.2017.07.014
  • Khalil, H. K., & Grizzle, J. W. (2002). Nonlinear systems (Vol. 3). Prentice Hall.
  • Khari, S., Rahmani, Z., & Rezaie, B. (2016). Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch. Chinese Physics B, 25(5), 050201. https://doi.org/10.1088/1674-1056/25/5/050201
  • Kong, L., He, W., Yang, W., Li, Q., & Kaynak, O. (2021). Fuzzy approximation-based finite-time control for a robot with actuator saturation under time-varying constraints of work space. IEEE Transactions on Cybernetics, 51(10), 4873–4884.
  • Kumar, N., Panwar, V., Borm, J.-H., & Chai, J. (2014). Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Applied Mathematics and Computation, 231, 320–328. https://doi.org/10.1016/j.amc.2013.12.082
  • Li, Y.-X. (2019). Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica, 106, 117–123. https://doi.org/10.1016/j.automatica.2019.04.022
  • Long, Y., Du, Z., Cong, L., Wang, W., Zhang, Z., & Dong, W. (2017). Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Transactions, 67, 389–397. https://doi.org/10.1016/j.isatra.2017.01.006
  • Lu, K., & Xia, Y. (2013). Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory & Applications, 7(11), 1529–1539. https://doi.org/10.1049/iet-cta.2012.1031
  • Mahmoodabadi, M. J., Taherkhorsandi, M., & Bagheri, A. (2014). Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO. Neurocomputing, 124, 194–209. https://doi.org/10.1016/j.neucom.2013.07.009
  • Martínez-Fonseca, N., Castañeda, LÁ, Uranga, A., Luviano-Juárez, A., & Chairez, I. (2016). Robust disturbance rejection control of a biped robotic system using high-order extended state observer. ISA Transactions, 62, 276–286. https://doi.org/10.1016/j.isatra.2016.02.003
  • Mu, X., & Wu, Q. (2004). Development of a complete dynamic model of a planar five-link biped and sliding mode control of its locomotion during the double support phase. International Journal of Control, 77(8), 789–799. https://doi.org/10.1080/00207170410001705005
  • Muñoz-Vázquez, A. J., Sánchez-Torres, J. D., Jiménez-Rodríguez, E., & Loukianov, A. G. (2019). Predefined-time robust stabilization of robotic manipulators. IEEE/ASME Transactions on Mechatronics, 24(3), 1033–1040. https://doi.org/10.1109/TMECH.2019.2906289
  • Rahmani, B., & Belkheiri, M. (2019). Adaptive neural network output feedback control for flexible multi-link robotic manipulators. International Journal of Control, 92(10), 2324–2338. https://doi.org/10.1080/00207179.2018.1436774
  • Rahmani, M., Ghanbari, A., & Ettefagh, M. M. (2018). A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. Journal of Vibration and Control, 24(10), 2045–2060. https://doi.org/10.1177/1077546316676734
  • Rezaie, B., & Khari, S. (2020). Adaptive intelligent terminal sliding mode controller for stabilizing a chaotic plasma torch system. Journal of Vibration and Control, 1077546320959520. https://doi.org/10.1177/1077546320959520
  • Sedghi, F., Arefi, M. M., Abooee, A., & Kaynak, O. (2021). Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties. IEEE/ASME Transactions on Mechatronics, 26(5), 2517–2527. https://doi.org/10.1109/TMECH.2020.3041613
  • Si, W., Dong, X., & Yang, F. (2017). Adaptive neural control for stochastic pure-feedback non-linear time-delay systems with output constraint and asymmetric input saturation. IET Control Theory & Applications, 11(14), 2288–2298. https://doi.org/10.1049/iet-cta.2017.0350
  • Tang, Z.-L., Ge, S. S., Tee, K. P., & He, W. (2016). Adaptive neural control for an uncertain robotic manipulator with joint space constraints. International Journal of Control, 89(7), 1428–1446. https://doi.org/10.1080/00207179.2015.1135351
  • Van, M., & Ge, S. S. (2021). Adaptive fuzzy integral sliding mode control for robust fault tolerant control of robot manipulators with disturbance observer. IEEE Transactions on Fuzzy Systems, 29(5), 1284–1296. https://doi.org/10.1109/TFUZZ.2020.2973955
  • Wang, H., Zhang, H., Wang, Z., & Chen, Q. (2020). Finite-time stabilization of periodic orbits for under-actuated biped walking with hybrid zero dynamics. Communications in Nonlinear Science and Numerical Simulation, 80, 104949. https://doi.org/10.1016/j.cnsns.2019.104949
  • Wang, P., Zhang, D., & Lu, B. (2021). ESO based sliding mode control for the welding robot with backstepping. International Journal of Control, 94(12), 3322–3331. https://doi.org/10.1080/00207179.2020.1762932
  • Yang, L., Liu, Z., & Chen, Y. (2019). Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm. ISA Transactions, 87, 143–153. https://doi.org/10.1016/j.isatra.2018.11.018
  • Yang, X., Ge, S. S., & He, W. (2018). Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. International Journal of Control, 91(4), 969–988. https://doi.org/10.1080/00207179.2017.1300837
  • Yιlmaz, M., Seven, U., & Erbatur, K. (2010). Biped robot walking control on inclined planes with fuzzy parameter adaptation. IFAC Proceedings Volumes, 43(10), 288–293. https://doi.org/10.3182/20100826-3-TR-4015.00054
  • Yuan, J., & Stepenanko, Y. (1992). Computing a manipulator regressor without acceleration feedback. Robotica, 10(3), 269–275. https://doi.org/10.1017/S0263574700008006
  • Zhang, J.-f., Dong, Y.-m., Yang, C.-j., Geng, Y., Chen, Y., & Yang, Y. (2010). 5-Link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients. Mechatronics, 20(3), 368–376. https://doi.org/10.1016/j.mechatronics.2010.02.003
  • Zhou, Z., Tang, G., Huang, H., Han, L., & Xu, R. (2020). Adaptive nonsingular fast terminal sliding mode control for underwater manipulator robotics with asymmetric saturation actuators. Control Theory and Technology, 18(1), 81–91. https://doi.org/10.1007/s11768-020-9127-0
  • Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686–702. https://doi.org/10.1002/rnc.1624

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.