142
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental research on vehicle active suspension based on time-delay control

, , , , , & show all
Pages 1157-1173 | Received 27 Oct 2022, Accepted 23 Mar 2023, Published online: 17 May 2023

References

  • Abdel-Rohman, M. (1987). Time-delay effects on actively damped structures. Journal of Engineering Mechanics, 113(11), 1709–1719. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:11(1709)
  • Ahmadian, M. (2017). Magneto-rheological suspensions for improving ground vehicle's ride comfort, stability, and handling. Vehicle System Dynamics, 55(7), 1–25. https://doi.org/10.1080/00423114.2017.1323106
  • Chai, M., Subhash, R., & Shangguan, W. (2019). Ride and roll stability analysis of off-road vehicles with torsio-elastic suspension. Journal of Vibration and Shock, 234, 1958–1971. https://doi.org/10.1177/0954407019885801
  • Chen, Y., Escalera Mendoza, A. S., & Griffith, D. T. (2021). Experimental and numerical study of high-order complex curvature mode shape and mode coupling on a three-bladed wind turbine assembly. Mechanical Systems and Signal Processing, 160(3), 107873. https://doi.org/10.1016/j.ymssp.2021.107873
  • Chung, L. L., Lin, R. C., Soong, T. T., & Reinhorn, A. M. (1989). Experimental study of active control for MDOF seismic structures. Journal of Engineering Mechanics, 115(8), 1609–1627. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1609)
  • Crolla, D., Yu, F., & Ke, L. L. (2004). Vehicle dynamics and control. China Communications Press.
  • El-Ganaini, W. A., Saeed, N. A., & Eissa, M. (2013). Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dynamics, 72(3), 517–537. https://doi.org/10.1007/s11071-012-0731-5
  • Fu, D., Jia, Z., Xu, Y., Gong, J., Gillon, F., Bracikowski, N., & Wu, X. (2021). Optimization design of a novel flux-switching transverse-flux permanent magnet tube linear motorIEEE Transactions on Magnetics, 57(6). https://doi.org/10.1109/TMAG.2021.3061812
  • Guang, L., Liu, X. Z., Ge, M. F., & Wu, Y. H. (2021). Delay-dependent cluster synchronization of time-varying complex dynamical networks with noise via delayed pinning impulsive control. Journal of the Franklin Institute, 358, 3193–3214. https://doi.org/10.1016/j.jfranklin.2021.02.004
  • Hosek, M., Elmali, H., & Olgac, N. (1997). A tunable torsional vibration absorber: The centrifugal delayed resonator. Journal of Sound and Vibration, 205(2), 151–165. https://doi.org/10.1006/jsvi.1997.0996
  • Jalili, N., & Olgac, N. (1999). Multiple delayed resonator vibration absorbers for multi-degree-of-freedom mechanical structures. Journal of Sound and Vibration, 223(4), 567–585. https://doi.org/10.1006/jsvi.1998.2105
  • Jibril, M., Tadese, M., & Alemayehu, E. (2020). Body travel performance improvement of space vehicle electromagnetic suspension system using LQG and LQI Control methods. https://doi.org/10.14293/S2199-1006.1.SOR-.PP76BPB.v1
  • Kararsiz, G., Paksoy, M., Metin, M., & Basturk, H. I. (2021). An adaptive control approach for semi-active suspension systems under unknown road disturbance input using hardware-in-the-loop simulation. Transactions of the Institute of Measurement and Control, 43(5), 995–1008. https://doi.org/10.1177/0142331219895935
  • Li, W., Xie, Z., Zhao, J., Wong, P. K., Wang, H., & Wang, X. (2020). Static-output-feedback based robust fuzzy wheelbase preview control for uncertain active suspensions with time delay and finite frequency constraint. IEEE/CAA Journal of Automatica Sinica, 8(3), 664–678. https://doi.org/10.1109/JAS.2020.1003183
  • Li, X. G., Chen, J. X., & Zhang, Y. (2017). Complete stability analysis with respect to delay for neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4672–4682. https://doi.org/10.1109/TNNLS.2017.2771808
  • Li, X.-G., Niculescu, S.-I., Cela, A., Zhang, L., & Li, X. (2016). A frequency-sweeping framework for stability analysis of time-delay systems. IEEE Transactions on Automatic Control, 62(8), 3701–3716. https://doi.org/10.1109/TAC.2016.2633533
  • Li, Y., Wang, T., Liu, W., & Tong, S. (2022). Neural network adaptive output-feedback optimal control for active suspension systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(6), 4021–4032. https://doi.org/10.1109/TSMC.2021.3089768
  • Liu, K., Chen, L. X., & Cai, G. P. (2014). Experimental study of active control for a flexible beam with nonlinear hysteresis and time delay. Journal of Vibration & Control, 22, 29–34. https://doi.org/10.1177/1077546314532301
  • Liu, K., Chen, L. X., Cai, G. P., & Zhang, W. D. (2017). Robust H-infinity control of building structures with time delay. The International Journal of Acoustics and Vibration, 22(1), 14–26. https://doi.org/10.20855/ijav.2017.22.1446
  • Liu, P., Ye, S., Wang, C., & Zhu, Z. (2019). Spark-based parallel genetic algorithm for simulating a solution of optimal deployment of an underwater sensor network. Sensors, 19(12), 2717. -. https://doi.org/10.3390/s19122717
  • Liu, X., Zhen, S., Sun, H., & Zhao, H. (2020). A novel model-based robust control for position tracking of permanent magnet linear motor. IEEE Transactions on Industrial Electronics, 67(9), 7767–7777. https://doi.org/10.1109/TIE.2019.2945281
  • Ma, X., Wong, P. K., & Zhao, J. (2019). Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper. Mechanical Systems and Signal Processing, 117, 667–688. https://doi.org/10.1016/j.ymssp.2018.08.022
  • Maccari, A. (2003). Vibration control for the primary resonance of a cantilever beam by a time delay state feedback. Journal of Sound and Vibration, 259(2), 241–251. https://doi.org/10.1006/jsvi.2002.5144
  • Meyer, C., Seborg, D. E., & Wood, R. K. (1977). An experimental application of time delay compensation techniques to distillation column control. IFAC Proceedings Volumes, 10(16), 439–446. https://doi.org/10.1016/S1474-6670(17)69554-5
  • Mohanty, S., & Dwivedy, S. K. (2019). Nonlinear dynamics of piezoelectric-based active nonlinear vibration absorber using time delay acceleration feedback. Nonlinear Dynamics, 98(2), 1465–1490. https://doi.org/10.1007/s11071-019-05271-4
  • Olgac, N., Elmali, H., & Vijayan, S. (1996). Introduction to the dual frequency fixed delayed resonator. Journal of Sound and Vibration, 189(3), 355–367. https://doi.org/10.1006/jsvi.1996.0024
  • Olgac, N., & Holm-Hansen, B. T. (1994). A novel active vibration absorption technique: Delayed resonator. Journal of Sound and Vibration, 176(1), 93–104. https://doi.org/10.1006/jsvi.1994.1360
  • Pang, H., Liang, J., Wang, J., & Liu, F. (2018). Adaptive fuzzy sliding mode control for vehicle active suspension systems considering system uncertainty. Zhendong yu Chongji/Journal of Vibration and Shock, 37(15), 261–269. CNKI:SUN:ZDCJ.0.2018-15-037
  • Pang, J. L. (2017). Design and experimental research of electromagnetic active suspension control strategy. Mechanical Design and Manufacture, 11, 142–145. https://doi.org/10.3969/j.issn.1001-3997.2017.11.036
  • Park, J. Y., Cho, B. H., & Lee, J. K. (2008). Trajectory control of underwater robot using time delay control. Transactions of the Korean Society of Mechanical Engineers A, 32(8), 685–692. https://doi.org/10.3795/KSME-A.2008.32.8.685
  • Qin, W., Ge, P., Liu, F., & Long, S. (2021). Adaptive robust control for active suspension systems: Targeting nonholonomic reference trajectory and large mismatched uncertainty. Nonlinear Dynamics, 104(4), 3861–3880. https://doi.org/10.1007/s11071-021-06557-2
  • Ren, C., & He, G. (2007). Application of meshless-fine integration algorithm to vibration problems of two-dimensional structures. Vibration and Shock, 05, 126–129+160. https://doi.org/10.13465/j.cnki.jvs.2007.05.033
  • Ren, C. B., He, G. Z., & Li, Z. F. (2005). A high-precision general computing format for fine integral of structural dynamics. Mechanical Science and Technology for Aerospace Engineering, 12, 1507–1509. https://doi.org/10.3321/j.issn:1003-8728.2005.12.033
  • Renzulli, M. E., Ghosh-Roy, R., & Olgac, N. (1999). Robust control of the delayed resonator vibration absorber. IEEE Transactions on Control Systems Technology, 7(6), 683–691. https://doi.org/10.1109/87.799669
  • Saeed, N. A., Awwad, E., & Awrejcewicz, J. (2020). Nonlinear dynamics of the six-pole rotor-AMB system under two different control configurations. Nonlinear Dynamics, 101, 2299–2323. https://doi.org/10.1007/s11071-020-05911-0
  • Tzounas, G., Sipahi, R., & Milano, F. (2021). Damping power system electromechanical oscillations using time delays. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(6), 2725–2735. https://doi.org/10.1109/TCSI.2021.3062970
  • Udwadia, F. E., von Bremen, H., Kumar, R., & Hosseini, M. (2003). Time delayed control of structural systems. Earthquake Engineering & Structural Dynamics, 32(4), 495–535. https://doi.org/10.1002/eqe.228
  • Vyhlídal, T., Dan, P., Alikoc, B., & Michiels, W. (2019). Analysis and design aspects of delayed resonator absorber with position, velocity or acceleration feedback. Journal of Sound and Vibration, 459, 114831. https://doi.org/10.1016/j.jsv.2019.06.038
  • Wang, F., Sun, X., Meng, H., & Xu, J. (2021). Time-delayed feedback control design and its application for vibration absorptionIEEE Transactions on Industrial Electronics, 68(9), 8593–8602. https://doi.org/10.1109/TIE.2020.3009612
  • Wang, Q., Ren, C., Zhou, J., & Zhang, L. (2019). The double-delay reducing vibration control for five-degree-of-freedom half-vehicle model in idle condition. Journal of Low Frequency Noise Vibration and Active Control, 39. https://doi.org/10.1177/1461348419828605
  • Wu, K., & Ren, C. (2020). Control and stability analysis of double time-delay active suspension based on particle swarm optimization. Shock and Vibration, 2020(8), 1–12. https://doi.org/10.1155/2020/8873701
  • Wu, K., Ren, C., Cao, J., & Sun, Z. (2020). Reach on damping control and stability analysis of vehicle with double time-delay and five degrees of freedom. Journal of Low Frequency Noise Vibration and Active Control. https://doi.org/10.1177/1461348420918693
  • Wu, K., Ren, C., & Chen, Y. (2021). Time-Delay vibration reduction control of 3-DOF vehicle model with vehicle seat. Applied Sciences, 11(20), 9426. https://doi.org/10.3390/app11209426
  • Wu, K., Ren, C., Chen, Y., Shao, S., Zhou, J., Ma, C., & Li, L. (2021). Vibration control of time-varying delay under complex excitation. Micromachines, 12(9), 1081. https://doi.org/10.3390/mi12091081
  • Xin, J., Zhong, J., Yang, F., Cui, Y., & Sheng, J. (2019). An improved genetic algorithm for path-planning of unmanned surface vehicle. Sensors, 19(11), 2640. https://doi.org/10.3390/s19112640
  • Xu, J., & Chung, K. W. (2004). Delay reduced double Hopf bifurcation in a limit cycle oscillator: Extension of a perturbation-incremental method. Dynam Contin Impul Syst B, 11, 136–143.
  • Yan, G., Fang, M. X., Dong, T. F., & Ji, R. J. (2018). Time-delay feedback control of vehicle suspension system based on state transformation method. Transactions of the Chinese Society of Agricultural Engineering, 34(10), 54–61. https://doi.org/10.11975/j.issn.1002-6819.2018.10.006
  • Yang, C., Xia, J., Ju, H. P., Shen, H., & Wang, J. (2021). Sliding mode control for uncertain active vehicle suspension systems: An event-triggered H∞ control scheme. Nonlinear Dynamics, 103(4), 3209–3221. https://doi.org/10.1007/s11071-020-05742-z
  • Yang J., Wang J., & Wang G. W. (2016). Analysis of the influence of ship propulsion shaft alignment on shafting vibration. Chinese Journal of Dynamics and Control, 14(2), 157–164. https://doi.org/10.6052/1672-6553-2015-041
  • You, H., Shen, Y. J., & Yang, S. P. (2017). Parameters design for passive fractional-order vehicle suspension based on particle swarm optimization. Journal of Vibration and Shock, 36, 224–228. https://doi.org/10.13465/j.cnki.jvs.2017.16.035
  • Zhang, G. W., Gao, F. H., Jiang, B., & Luo, M. J. (2016). Optimization and experimental study of McPherson suspension handling stability. Auto Parts, 11, 8–12. https://doi.org/10.19466/j.cnki.1674-1986.2016.11.002
  • Zhang, Y. L., & Zhong, Y. F. (2004). Time Domain Model of Road Undulation Excitation to Vehicles. Chinese Journal of Agricultural Machinery, 35(2), 9–12. https://doi.org/10.3969/j.issn.1000-1298.2004.02.003
  • Zhong, W. (1994). Refined time-history integration method for structural dynamic equations. Journal of Dalian University of Technology, 34(02|2), 131–136. CNKI:SUN:DLLG.0.1994-02-003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.