94
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Asymptotic stability of a periodic GA-predation system with infinite distributed lags on time scales

Pages 1542-1552 | Received 24 May 2022, Accepted 08 May 2023, Published online: 22 May 2023

References

  • Ai, A., & Sun, Y. (n.d.). An optimal stopping problem in the stochastic Gilpin-Ayala population model. Advances in Difference Equations, 2012(1), Article 210. https://doi.org/10.1186/1687-1847-2012-210
  • Alidousti, J. (2020). Stability and bifurcation analysis for a fractional prey-predator scavenger model. Applied Mathematical Modelling, 81, 342–355. https://doi.org/10.1016/j.apm.2019.11.025
  • Alidousti, J., & Ghahfarokhi, M. (2019). Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey. Applied Mathematical Modelling, 72, 385–402. https://doi.org/10.1016/j.apm.2019.03.029
  • Alzabut, J. (2010). Almost periodic solutions for impulsive delay Nicholsons blowflies population model. Journal of Computational and Applied Mathematics, 234(1), 233–239. https://doi.org/10.1016/j.cam.2009.12.019
  • Alzabut, J., Nieto, J., & Stamov, G. (2009). Existence and exponential stability of positive almost periodic solutions for a model of Hematopoiesis. Boundary Value Problems, 2009(1), Article 127510. https://doi.org/10.1155/2009/127510
  • Amdouni, M., Chérif, F., & Alzabut, J. (2021). Pseudo almost periodic solutions and global exponential stability of a new class of nonlinear generalized Gilpin-Ayala competitive model with feedback control with delays. Computational and Applied Mathematics, 40(3), Article 91. https://doi.org/10.1007/s40314-021-01464-z
  • Ayala, F., Gilpin, M., & Eherenfeld, J. (1973). Competition between species: Theoretical models and experimental tests. Theoretical Population Biology, 4(3), 331–356. https://doi.org/10.1016/0040-5809(73)90014-2
  • Bohner, M., & Peterson, A. (2001). Dynamic equations on time scales: An introduction with applications. Birkhäuser.
  • Bohner, M., & Peterson, A. (2003). Advances in dynamic equations on time scales. Birkhäuser.
  • Chen, F. (2006). Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays. Nonlinear Analysis: Real World Applications, 7(5), 1205–1222. https://doi.org/10.1016/j.nonrwa.2005.11.003
  • Eswari, R., Alzabut, J., Samei, M., & Zhou, H. (2021). On periodic solutions of a discrete Nicholson's dual system with density-dependent mortality and harvesting terms. Advances in Difference Equations, 2021(1), Article 360. https://doi.org/10.1186/s13662-021-03521-7
  • Fang, H. (2012). Multiple positive periodic solutions for a food-limited two-species Gilpin-Ayala competition patch system with periodic harvesting terms. Journal of Inequalities and Applications, 2012(1), Article 291. https://doi.org/10.1186/1029-242X-2012-291
  • Fang, H., & Wang, Y. (2013). Four periodic solutions for a food-limited twospecies Gilpin-Ayala type predator-prey system with harvesting terms on time scales. Advances in Difference Equations, 2013(1), Article 278. https://doi.org/10.1186/1687-1847-2013-278
  • Gaines, R., & Mawhin, J. (1977). Coincidence degree and nonlinear differetial equitions. Springer Verlag.
  • He, M., Li, Z., & Chen, F. (2010). Permanence, extinction and global attractivity of the periodic Gilpin-Ayala competition system with impulses. Nonlinear Analysis: Real World Applications, 11(3), 1537–1551. https://doi.org/10.1016/j.nonrwa.2009.03.007
  • Hilger, S. (1990). Analysis on measure chains–A unified approach to continuous and discrete calculus. Results in Mathematics, 18(1-2), 18–56. https://doi.org/10.1007/BF03323153
  • Huang, H., Zhao, K., & Liu, X. (2022). On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 7(10), 19221–19236. https://doi.org/10.3934/math.20221055
  • Korobenko, L., & Braverman, E. (2014). On evolutionary stability of carrying capacity driven dispersal in competition with regularly diffusing populations. Journal of Mathematical Biology, 69(5), 1181–1206. https://doi.org/10.1007/s00285-013-0729-8
  • Lakshmikantham, V., & Vatsala, A. (2002). Hybrid system on time scales. Journal of Computational and Applied Mathematics, 141(1–2), 227–235. https://doi.org/10.1016/S0377-0427(01)00448-4
  • Li, Y., Zhao, K., & Ye, Y. (2011). Multiple positive periodic solutions of n species delay competition systems with harvesting terms. Nonlinear Analysis: Real World Applications, 12(2), 1013–1022. https://doi.org/10.1016/j.nonrwa.2010.08.024
  • Li, Z., Zhang, W., Huang, C., & Zhou, J. (2021). Bifurcation for a fractional-order Lotka-Volterra predator-prey model with delay feedback control. AIMS Mathematics, 6(1), 675–687. https://doi.org/10.3934/math.2021040
  • Lian, B., & Hu, S. (2008). Asymptotic behaviour of the stochastic Gilpin-Ayala competition models. Journal of Mathematical Analysis and Applications, 339(1), 419–428. https://doi.org/10.1016/j.jmaa.2007.06.058
  • Liu, Q. (2015). Asymptotic properties of a stochastic n-species Gilpin-Ayala competitivemodel with Lévy jumps and Markovian switching. Communications in Nonlinear Science and Numerical Simulation, 26(1–3), 1–10. https://doi.org/10.1016/j.cnsns.2015.01.007
  • Lu, H., & Yu, G. (2015). Permanence of a Gilpin-Ayala predator-prey system with time-dependent delay. Advances in Difference Equations, 2015(1), Article 109. https://doi.org/10.1186/s13662-014-0354-x
  • Luo, D., Tian, M., & Zhu, Q. (2022). Some results on finite-time stability of stochastic fractional-order delay differential equations. Chaos, Solitons & Fractals, 158, Article 111996. https://doi.org/10.1016/j.chaos.2022.111996
  • Luo, D., Zhu, Q., & Luo, Z. (2020). An averaging principle for stochastic fractional differential equations with time-delays. Applied Mathematics Letters, 105, Article 106290. https://doi.org/10.1016/j.aml.2020.106290
  • Luo, D., Zhu, Q., & Luo, Z. (2021). A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Applied Mathematics Letters, 122, Article 107549. https://doi.org/10.1016/j.aml.2021.107549
  • Rihan, F., & Rajivganthi, C. (2020). Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators. Chaos, Solitons & Fractals, 141, Article 110365. https://doi.org/10.1016/j.chaos.2020.110365
  • Saker, S., & Alzabut, J. (2009). On impulsive delay Hematopoiesis model with periodic coefficients. Rocky Mountain Journal of Mathematics, 39(5), 1657–1688. https://www.jstor.org/stable/44239606
  • Settati, A., & Lahrouz, A. (2015). On stochastic Gilpin-Ayala population model with Markovian switching. Bio Systems, 130(217), 17–27. https://doi.org/10.1016/j.biosystems.2015.01.004
  • Vasilova, M., & Jovanović, M. (2011). Stochastic Gilpin-Ayala competition model with infinite delay. Applied Mathematics and Computation, 10(10), 4944–4959. https://doi.org/10.1016/j.amc.2010.11.043
  • Wang, D. (2016). Dynamic behaviors of an obligate Gilpin-Ayala system. Advances in Difference Equations, 2016(1), Article 270. https://doi.org/10.1186/s13662-016-0965-5
  • Wang, J., Shi, K., Huang, Q., Zhong, S., & Dian, D. (2018). Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout. Applied Mathematics and Computation, 335(8), 211–230. https://doi.org/10.1016/j.amc.2018.04.038
  • Wang, X., Luo, D., & Zhu, Q. (2022). Ulam-Hyers stability of Caputo type fuzzy fractional differential equations with time-delays. Chaos, Solitons & Fractals, 156, Article 111822. https://doi.org/10.1016/j.chaos.2022.111822
  • Wu, R., Zou, X., & Wang, K. (2014). Asymptotic properties of stochastic hybrid Gilpin-Ayala system with jumps. Applied Mathematics and Computation, 249, 53–66. https://doi.org/10.1016/j.amc.2014.10.043
  • Xu, C., Liao, M., Li, P., Guo, Y., & Liu, Z. (2021). Bifurcation properties for fractional order delayed BAM neural networks. Cognitive Computation, 13(2), 322–356. https://doi.org/10.1007/s12559-020-09782-w
  • Xu, C., Liu, Z., Aouiti, C., Li, P., Yao, L., & Yan, J. (2022). New exploration on bifurcation for fractional-order quaternion-valued neural networks involving leakage delays. Cognitive Neurodynamics, 16(5), 1233–1248. https://doi.org/10.1007/s11571-021-09763-1
  • Xu, C., Liu, Z., Liao, M., & Yao, L. (2022). Theoretical analysis and computer simulations of a fractional order bank data model incorporating two unequal time delays. Expert Systems with Applications, 199, Article 116859. https://doi.org/10.1016/j.eswa.2022.116859
  • Xu, C., Mu, D., Liu, Z., Pang, Y., Liao, M., Li, P., Yao, L., & Qin, Q. (2022). Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks. Nonlinear Analysis: Modelling and Control, 27(6), 1030–1053. https://doi.org/10.15388/namc.2022.27.28491
  • Xu, C., Zhang, W., Aouiti, C., Liu, Z., & Yao, L. (2022). Further analysis on dynamical properties of fractional-order bi-directional associative memory neural networks involving double delays. Mathematical Methods in the Applied Sciences, 45(17), 11736–11754. https://doi.org/10.1002/mma.v45.17
  • Xu, C., Zhang, W., Liu, Z., & Yao, L. (2022). Delay-induced periodic oscillation for fractional-order neural networks with mixed delays. Neurocomputing, 488, 681–693. https://doi.org/10.1016/j.neucom.2021.11.079
  • Zhang, T., & Li, Y. (2022a). Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. Applied Mathematics Letters, 124, Article 107709. https://doi.org/10.1016/j.aml.2021.107709
  • Zhang, T., & Li, Y. (2022b). Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique. Knowledge-Based Systems, 246, Article 108675. https://doi.org/10.1016/j.knosys.2022.108675
  • Zhang, T., & Xiong, L. (2020). Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Applied Mathematics Letters, 101, Article 106072. https://doi.org/10.1016/j.aml.2019.106072
  • Zhang, T., Zhou, J., & Liao, Y. (2022). Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives. IEEE Transactions on Cybernetics, 52(9), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946
  • Zhao, K. (2017). Positive periodic solutions of Lotka-Volterra-like impulsive functional differential equations with infinite distributed time delays on time scales. Advances in Difference Equations, 2017(1), Article 328. https://doi.org/10.1186/s13662-017-1381-1
  • Zhao, K. (2018a). Global exponential stability of positive almost periodic solutions for a class of two-layer Gilpin-Ayala predator-prey model with time delays. Advances in Difference Equations, 2018(1), Article 129. https://doi.org/10.1186/s13662-018-1584-0
  • Zhao, K. (2018b). Global exponential stability of positive periodic solution of the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. Journal of Biological Dynamics, 12(1), 433–454. https://doi.org/10.1080/17513758.2018.1467048
  • Zhao, K. (2021). Global exponential stability of positive periodic solutions for a class of multiple species Gilpin-Ayala system with infinite distributed time delays. International Journal of Control, 94(2), 521–533. https://doi.org/10.1080/00207179.2019.1598582
  • Zhao, K. (2022a). Coincidence theory of a nonlinear periodic Sturm-Liouville system and its applications. Axioms, 11(12), Article 726. https://doi.org/10.3390/axioms11120726
  • Zhao, K. (2022b). Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel. Fractal and Fractional, 6(9), Article 469. https://doi.org/10.3390/fractalfract6090469
  • Zhao, K. (2022c). Global stability of a novel nonlinear diffusion online game addiction model with unsustainable control. AIMS Mathematics, 7(12), 20752–20766. https://doi.org/10.3934/math.20221137
  • Zhao, K. (2022d). Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms. International Journal of Control. in press.https://doi.org/10.1080/00207179.2022.2078425
  • Zhao, K. (2022e). Probing the oscillatory behavior of internet game addiction via diffusion PDE model. Axioms, 11(11), Article 649. https://doi.org/10.3390/axioms11110649
  • Zhao, K. (2022f). Stability of a nonlinear fractional Langevin system with nonsingular exponential kernel and delay control. Discrete Dynamics in Nature and Society, 2022(1), Article 9169185. https://doi.org/10.1155/2022/9169185
  • Zhao, K. (2022g). Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control. Fractal and Fractional, 6(12), Article 725. https://doi.org/10.3390/fractalfract6120725
  • Zhao, K. (2022h). Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control. Axioms, 11(7), Article 350. https://doi.org/10.3390/axioms11070350
  • Zhao, K. (2023a). Attractor of a nonlinear hybrid reaction-diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags. AIMS Mathematics, 8(6), 14426–14448. https://doi.org/10.3934/math.2023737
  • Zhao, K. (2023b). Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales. Axioms, 12(3), Article 315. https://doi.org/10.3390/axioms12030315
  • Zhao, K. (2023c). Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat, 37(4), 1053–1063. https://doi.org/10.2298/FIL2304053Z
  • Zhao, K. (2023d). Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays. Applied Mathematics and Computation, 437, Article 127540. https://doi.org/10.1016/j.amc.2022.127540
  • Zhao, K. (2023e). Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations. AIMS Mathematics, 8(6), 13351–13367. https://doi.org/10.3934/math.2023676
  • Zhao, K., & Deng, S. (2021). Existence and UlamCHyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator. Advances in Difference Equations, 2021(1), Article 44. https://doi.org/10.1186/s13662-020-03207-6
  • Zhao, K., Ding, L., & Yang, F. (2014). Existence of multiple periodic solutions to Lotka-Volterra network-like food-chain system with delays and impulses on time scales. International Journal of Biomathematics, 7(1), Article 1450003. https://doi.org/10.1142/S179352451450003X
  • Zhao, K., & Liu, J. (2013). Existence of positive almost periodic solutions for delay Lotka-Volttera cooperative systems. Electronic Journal of Differential Equations, 2013(1), Article 157. http://ejde.math.txstate.edu
  • Zhao, K., & Ma, S. (2021a). Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 7(2), 3169–3185. https://doi.org/10.3934/math.2022175
  • Zhao, K., & Ma, Y. (2021b). Study on the existence of solutions for a class of nonlinear neutral Hadamard-type fractional integro-differential equation with infinite delay. Fractal and Fractional, 5(2), Article 52. https://doi.org/10.3390/fractalfract5020052
  • Zhao, K., & Ren, Y. (2017). Existence of positive periodic solutions for a class of Gilpin-Ayala ecological models with discrete and distributed time delays. Advances in Difference Equations, 2017(1), Article 331. https://doi.org/10.1186/s13662-017-1386-9
  • Zhao, K., & Ye, Y. (2010). Four positive periodic solutions to a periodic Lotka-Volterra predatory-prey system with harvesting terms. Nonlinear Analysis: Real World Applications, 11(4), 2448–2455. https://doi.org/10.1016/j.nonrwa.2009.08.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.