139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Adaptive quantisation synchronisation control for bilateral teleoperation systems with communication delays

, , ORCID Icon, &
Pages 1601-1611 | Received 07 Mar 2022, Accepted 24 May 2023, Published online: 07 Jun 2023

References

  • Anderson, R. J., & Spong, M. W. (1989). Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control, 34(5), 494–501. https://doi.org/10.1109/9.24201
  • Chen, M., Ge, S. S., & Ren, B. (2011). Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 47(3), 452–465. https://doi.org/10.1016/j.automatica.2011.01.025
  • Gao, H., & Chen, T. (2008). A new approach to quantized feedback control systems. Automatica, 44(2), 534–542. https://doi.org/10.1016/j.automatica.2007.06.015
  • Hashemzadeh, F., & Tavakoli, M. (2015). Position and force tracking in nonlinear teleoperation systems under varying delays. Robotica, 33(4), 1003–1016. https://doi.org/10.1017/S026357471400068X
  • Hayakawa, T., Ishii, H., & Tsumura, K. (2009). Adaptive quantized control for linear uncertain discrete-time systems. Automatica, 45(3), 692–700. https://doi.org/10.1016/j.automatica.2008.07.005
  • He, W., Ouyang, Y., & Hong, J. (2017). Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Transactions on Industrial Informatics, 13(1), 48–59. https://doi.org/10.1109/TII.2016.2608739
  • Hokayem, P. F., & M. W. Spong (2006). Bilateral teleoperation: An historical survey. Automatica, 42(12), 2035–2057. https://doi.org/10.1016/j.automatica.2006.06.027
  • Hua, C. C., & Liu, X. P. (2010). Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Transactions on Robotics, 26(5), 925–932. https://doi.org/10.1109/TRO.2010.2053736
  • Hua, C., Liu, P. X., & Guan, X. (2009). Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems. IEEE Transactions on Industrial Electronics, 56(9), 3723–3732. https://doi.org/10.1109/TIE.2009.2025713
  • Kebria, P. M., Khosravi, A., Nahavandi, S., Shi, P., & Alizadehsani, R. (2019). Robust adaptive control scheme for teleoperation systems with delay and uncertainties. IEEE Transactions on Cybernetics, 50(7), 3243–3253. https://doi.org/10.1109/TCYB.6221036
  • Li, S., Wang, H., & Rafique, M. U. (2017). A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1908–1918. https://doi.org/10.1109/TNNLS.2017.2672989
  • Li, Z., Xia, Y., Wang, D., Zhai, D. H., Su, C. Y., & Zhao, X. (2016). Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints. IEEE Transactions on Cybernetics, 46(5), 1051–1064. https://doi.org/10.1109/TCYB.2015.2422785
  • Liberzon, D., & Hespanha, J. P. (2005). Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 50(6), 910–915. https://doi.org/10.1109/TAC.2005.849258
  • Liu, J., & Elia, N. (2004). Quantized feedback stabilization of nonlinear affine systems. International Journal of Control, 77(3), 239–249. https://doi.org/10.1080/00207170310001655336
  • Liu, Y. C., & Khong, M. H. (2015). Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE/ASME Transactions on Mechatronics, 20(5), 2550–2562. https://doi.org/10.1109/TMECH.2015.2388555
  • Liu, Z., Wang, F., Zhang, Y., & Chen, C. L. (2016). Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Transactions on Cybernetics, 46(2), 524–534. https://doi.org/10.1109/TCYB.2015.2405616
  • Miller, R. K., Michel, A. N., & Farrell, J. A. (1989). Quantizer effects on steady-state error specifications of digital feedback control systems. IEEE Transactions on Automatic Control, 34(6), 651–654. https://doi.org/10.1109/9.24241
  • Nair, G. N., & Evans, R. J. (2004). Stabilizability of stochastic linear systems with finite feedback data rates. SIAM Journal on Control and Optimization, 43(2), 413–436. https://doi.org/10.1137/S0363012902402116
  • Niemeyer, G., & Slotine, J. J. E. (1991). Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering, 16(1), 152–162. https://doi.org/10.1109/48.64895
  • Pan, Y. J., Canudas-De-Wit, C., & Sename, O. (2006). A new predictive approach for bilateral teleoperation with applications to drive-by-wire systems. IEEE Transactions on Robotics, 22(6), 1146–1162. https://doi.org/10.1109/TRO.2006.886279
  • Park, S. H., & Han, S. I. (2011). Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller. IET Control Theory and Applications, 5(12), 1397–1417. https://doi.org/10.1049/iet-cta.2010.0460
  • Sanner, R. M., & Slotine, J. J. E. (1992). Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 3(6), 837–863. https://doi.org/10.1109/72.165588
  • Selmic, R. R., & Lewis, F. L. (2015). Deadzone compensation in motion control systems using neural networks. IEEE Transactions on Automatic Control, 45(4), 602–613. https://doi.org/10.1109/9.847098
  • Sun, D., Liao, Q., Gu, X., Li, C., & Ren, H. (2018). Multilateral teleoperation with new cooperative structure based on reconfigurable robots and type-2 fuzzy logic. IEEE Transactions on Cybernetics, 49(8), 2845–2859. https://doi.org/10.1109/TCYB.6221036
  • Tatikonda, S., & Mitter, S. (2004). Control under communication constraints. IEEE Transactions on Automatic Control, 49(7), 1056–1068. https://doi.org/10.1109/TAC.2004.831187
  • Tong, S., Zhang, L., & Li, Y. (2016). Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Transactions on Systems, Man and Cybernetics, 46(1), 37–47. https://doi.org/10.1109/TSMC.2015.2426131
  • Wang, M., Ge, S. S., & Hong, K. S. (2010). Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Transactions on Neural Networks, 21(11), 1804–1816. https://doi.org/10.1109/TNN.2010.2073719
  • Wong, W. S., & Brockett, R. W. (1999). Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback. IEEE Transactions on Automatic Control, 44(5), 1049–1053. https://doi.org/10.1109/9.763226
  • Xu, K., Wang, H., & Liu, P. X. (2023). Adaptive fuzzy finite-time tracking control of nonlinear systems with unmodeled dynamics. Applied Mathematics and Computation, 450, 127992.https://doi.org/10.1016/j.amc.2023.127992
  • Yang, Y., Hua, C., & Guan, X. (2014). Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Transactions on Fuzzy Systems, 22(3), 631–641. https://doi.org/10.1109/TFUZZ.2013.2269694
  • Yang, C., Wang, X., Li, Z., Li, Y., & Su, C. Y. (2017). Teleoperation control based on combination of wave variable and neural networks. IEEE Transactions on Systems, Man and Cybernetics: Systems, 47(8), 2125–2136. https://doi.org/10.1109/TSMC.2016.2615061
  • Yoo, S. J., & Park, J. B. (2009). Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Transactions on Systems, Man and Cybernetics, Part B, Cybernetics, 39(5), 1316–1323. https://doi.org/10.1109/TSMCB.2009.2016110
  • Zhai, D. H., & Xia, Y. (2016). Adaptive control for teleoperation system with varying time delays and input saturation constraints. IEEE Transactions on Industrial Electronics, 63(11), 6921–6929. https://doi.org/10.1109/TIE.2016.2583199
  • Zhou, J., & Wen, C. (2008). Adaptive backstepping control of uncertain systems. Springer.
  • Zhou, J., Wen, C., & Yang, G. (2014). Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Transactions on Automatic Control, 59(2), 460–464. https://doi.org/10.1109/TAC.2013.2270870

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.